## Madden-Julian Oscillation: Recent Evolution, Current Status and Predictions # Outline Overview **Recent Evolution and Current Conditions** **MJO Index Information** **MJO Index Forecasts** **MJO Composites** ## Overview The MJO remained generally incoherent during the past week. Some observational data in recent days, however, indicate that the MJO may be becoming more organized. These features remain influenced by the continued pattern of anomalous tropical convection consistent with El Nino. Some dynamical model forecasts of the MJO index indicate a strengthening signal across the western Maritime continent with eastward propagation of to the far western Pacific by the end of the period. Other models quickly weaken this signal. The MJO is forecast to strengthen during the period with the enhanced phase organizing over the Maritime continent and shifting into the western Pacific during the period. There is considerable uncertainty at the current time and it is unclear if the predicted evolution will in fact emerge as more robust, long lived MJO activity in the coming weeks. The MJO is favored to substantially modulate the background pattern of anomalous tropical convection across much of the global Tropics over the period. Additional potential impacts across the global tropics and a discussion for the U.S. are available at: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php ### 850-hPa Vector Wind Anomalies (m s-1) Note that shading denotes the zonal wind anomaly **Blue shades:** Easterly anomalies Red shades: Westerly anomalies Westerly anomalies continued over the Indian Ocean during the most recent five days. Easterly anomalies continued over the Maritime Continent and expanded somewhat eastward during the latest five days. Westerly anomalies intensified across areas of the east-central Pacific during the last five days. ### 850-hPa Zonal Wind Anomalies (m s-1) Westerly anomalies (orange/red shading) represent anomalous west-to-east flow Easterly anomalies (blue shading) represent anomalous east-to-west flow The red box highlights the persistent low-frequency westerly wind anomalies associated with ENSO. A robust MJO event was observed in late June through mid-July. Otherwise, tropical cyclone activity across much of the Pacific provided the primary transient influence on the overall ENSO pattern for much of the NH summer. An eastward shift in the pattern was observed in late October, related to subseasonal activity. ### OLR Anomalies - Past 30 days Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) Enhanced (suppressed) convection was evident over the central Indian Ocean (Maritime continent/Philippines). Enhanced convection increased from the eastern Pacific to the Caribbean while suppressed convection remained over northern South America. Suppressed convection persisted over the Maritime Continent during late November into early December while enhanced convection intensified in the central Pacific. During early December, the pattern of anomalous convection is quite consistent with ongoing strong El Nino conditions as enhanced convection has increased over the eastern and central Pacific in a more zonally oriented fashion. # Outgoing Longwave Radiation (OLR) Anomalies (5°N-5°S) Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) Since April, the ongoing El Niño is observed (red box) as a tendency toward a dipole of anomalous convection extending from the Maritime Continent (suppressed) to the East Pacific (enhanced). During June and early July, the MJO become active, interfering with the ENSO signal at times. Since July, the MJO has remained weak, with strong El Niño conditions and tropical cyclone activity dominating the pattern. The tripole pattern of enhanced/suppressed/enhanced convection stretching from the Indian Ocean to the eastern Pacific has shifted slightly to the east during December. # 200-hPa Velocity Potential Anomalies (5°S - 5°N) Positive anomalies (brown shading) indicate unfavorable conditions for precipitation Negative anomalies (green shading) indicate favorable conditions for precipitation The ongoing ENSO state is highlighted by the red box, showing anomalous divergence over the central and eastern Pacific. This pattern has only been temporarily interrupted by strong Kelvin wave/MJO activity at times. During June and early July, a high-amplitude MJO event was observed, constructively interfering with the El Niño signal in early July. From July through early October, a generally stationary pattern, reflective of El Niño conditions, was observed. During late October, there was an eastward shift in the pattern associated with subseasonal activity followed by evidence of equatorial Rossby and Kelvin wave activity impacting the central Pacific. Most recently, strong enhanced divergence is once again evident near and to the east of the Date Line. ## IR Temperatures (K) / 200-hPa Velocity Potential Anomalies The upper-level velocity potential anomaly pattern shows generally weak anomalous upper-level divergence over the east-central Pacific and Maritime continent with upper-level convergence centered across the Atlantic. Positive anomalies (brown contours) indicate unfavorable conditions for precipitation Negative anomalies (green contours) indicate favorable conditions for precipitation ### 200-hPa Vector Wind Anomalies (m s-1) Note that shading denotes the zonal wind anomaly **Blue shades:** Easterly anomalies Red shades: Westerly anomalies Easterly anomalies during the last five days decreased in coverage and magnitude over the east-central Pacific. Westerly anomalies persisted from the America's to western Africa. ### 200-hPa Zonal Wind Anomalies (m s-1) Westerly anomalies (orange/red shading) represent anomalous west-to-east flow Easterly anomalies (blue shading) represent anomalous east-to-west flow Easterly anomalies have persisted over the central and eastern Pacific since June associated with El Niño (red box). During June and July, these easterly anomalies were interrupted by robust atmospheric Kelvin wave/MJO activity. During late October, an eastward shift in the pattern was evident, with westerly anomalies propagating as far as 160E. Most recently during November and December a return to conditions more consistent with background El Nino conditions is evident. # Weekly Heat Content Evolution in the Equatorial Pacific Oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion. Following a strong westerly wind burst in March, a strong downwelling phase of a Kelvin wave propagated eastward, reaching the South American coast during May. Reinforcing downwelling events have followed, resulting in persistently abovenormal heat content from the Date Line to 80W throughout the period. An expansion of below average heat content over the western Pacific is evident since spring and this area has increased during November and December 2015. ## **MJO Index -- Information** The MJO index illustrated on the next several slides is the CPC version of the Wheeler and Hendon index (2004, hereafter WH2004). Wheeler M. and H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, *Monthly Weather Review*, 132, 1917-1932. The methodology is very similar to that described in WH2004 but does not include the linear removal of ENSO variability associated with a sea surface temperature index. The methodology is consistent with that outlined by the U.S. CLIVAR MJO Working Group. Gottschalck et al. 2010: A Framework for Assessing Operational Madden-Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project, *Bull. Amer. Met. Soc.*, 91, 1247-1258. The index is based on a combined Empirical Orthogonal Function (EOF) analysis using fields of near-equatorially-averaged 850-hPa and 200-hPa zonal wind and outgoing longwave radiation (OLR). ### **MJO Index - Recent Evolution** The axes (RMM1 and RMM2) represent daily values of the principal components from the two leading modes The triangular areas indicate the location of the enhanced phase of the MJO Counter-clockwise motion is indicative of eastward propagation. Large dot most recent observation. Distance from the origin is proportional to MJO strength Line colors distinguish different months The RMM index has shown little eastward propagation during the past several weeks with generally a weak or incoherent signal. ### MJO Index - Historical Daily Time Series Time series of daily MJO index amplitude for the last few years. Plot puts current MJO activity in recent historical context. ## Ensemble GFS (GEFS) MJO Forecast RMM1 and RMM2 values for the most recent 40 days and forecasts from the ensemble Global Forecast System (GEFS) for the next 15 days light gray shading: 90% of forecasts dark gray shading: 50% of forecasts The GFS ensemble MJO index forecast depicts some eastward propagation of a more moderate signal over the next two weeks. #### Yellow Lines - 20 Individual Members Green Line - Ensemble Mean ## Ensemble GFS (GEFS) MJO Forecast Spatial map of OLR anomalies for the next 15 days The GEFS MJO index-based OLR forecast depicts a generally stationary anomaly pattern favoring enhanced (suppressed) convection over the eastern Indian Ocean/western Maritime continent (west-central Pacific) during the next two weeks. Figures below show MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) Time-longitude section of (7.5° S-7.5° N) OLR anomalies - last 180 days and for the next 15 days ## Constructed Analog (CA) MJO Forecast Spatial map of OLR anomalies for the next 15 days The constructed analog model depicts more eastward propagation of the MJO signal, with enhanced (suppressed) convection propagating from the eastern Indian Ocean to the far West Pacific (from the Americas to the Indian Ocean). Figures below show MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) Time-longitude section of (7.5° S-7.5° N) OLR anomalies - last 180 days and for the next 15 days ## **MJO Composites - Global Tropics** 850-hPa Velocity Potential and Wind Anomalies (Nov-Mar) #### Precipitation Anomalies (Nov-Mar) ### U.S. MJO Composites - Temperature Left hand side plots show temperature anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Blue (orange) shades show negative (positive) anomalies respectively. Right hand side plots show a measure of significance for the left hand side anomalies. Purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml ### U.S. MJO Composites - Precipitation Left hand side plots show precipitation anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Brown (green) shades show negative (positive) anomalies respectively. Right hand side plots show a measure of significance for the left hand side anomalies. Purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml