Madden-Julian Oscillation: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP December 19, 2011 #### <u>Outline</u> - Overview - Recent Evolution and Current Conditions - MJO Index Information - MJO Index Forecasts - MJO Composites #### <u>Overview</u> - The MJO continued to weaken during the past week. The majority of observational indicators have become much less coherent. - The majority of dynamical model MJO index forecasts indicate generally incoherent behavior during the forecast period. - The MJO is not expected to contribute substantially to patterns of tropical rainfall variability during the period. Additional potential impacts across the global tropics are available at: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php ### 850-hPa Vector Wind Anomalies (m s⁻¹) Note that shading denotes the zonal wind anomaly **Blue shades:** Easterly anomalies Red shades: Westerly anomalies Westerly wind anomalies have weakened over most of the Indian Ocean during the last five days. Easterly anomalies strengthened over the west Pacific. Westerly wind anomalies have strengthened over the east Pacific Ocean during the last five days. #### 850-hPa Zonal Wind Anomalies (m s⁻¹ Westerly anomalies (orange/red shading) represent anomalous west-to-east flow **Easterly anomalies (blue shading)** represent anomalous east-to-west flow In early October, MJO activity weakened the persistent easterly anomalies across the central Pacific (first dashed line). An equatorial Rossby wave imparted westerly anomalies across parts of the western Pacific and Maritime continent during late October and early November (thin solid line). MJO activity continued into December (altering dashed and dotted lines) and most recently weakened, although westerly anomalies across the Maritime **Continent and easterly anomalies** across the Pacific Ocean are evident. Time Longitude #### OLR Anomalies – Past 30 days 27 NOV 2011 to 6 DEC 2011 7 DEC 2011 to 16 DEC 2011 Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) During mid November suppressed convection (red circle) was observed across parts of the western Pacific and Maritime continent, while enhanced convection (blue circle) intensified over the western Indian Ocean. During late November and early December, enhanced convection encompassed most of the Indian Ocean, consistent with MJO activity at that time. Suppressed convection strengthened over the Western Pacific near the Date Line. During mid December, suppressed convection continued near the Date Line in the west-central Pacific, while enhanced convection shifted over the Maritime Continent and SPCZ regions. # Outgoing Longwave Radiation (OLR) Anomalies (7.5°S-7.5°N) Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) (Courtesy of CAWCR Australia Bureau of Meteorology) Little MJO activity was observed during July and August. Beginning in mid-September, enhanced convection shifted from southern Asia to the western Pacific while suppressed convection developed during late September across India and also shifted eastward to the western Pacific. A second cycle of enhanced and suppressed convection was evident during the second half of October and first half of November. Most recently, OLR anomalies have weakened. Time Longitude ## **200-hPa Velocity Potential Anomalies (5°S-5°N)** <u>Positive</u> anomalies (brown shading) indicate unfavorable conditions for precipitation <u>Negative</u> anomalies (green shading) indicate favorable conditions for precipitation During parts of June, July and August very fast eastward propagation was evident at times and mainly associated with higher frequency subseasonal coherent tropical variability not associated with MJO activity. During the second half of September negative anomalies developed across the Western Pacific, with positive anomalies in the Indian Ocean, consistent with MJO genesis and subsequent circumglobal propagation. Recently, negative anomalies have moved through the Maritime Continent and have weakened. Longitude ## IR Temperatures (K) / 200-hPa Velocity Potential Anomalies <u>Positive</u> anomalies (brown contours) indicate unfavorable conditions for precipitation <u>Negative</u> anomalies (green contours) indicate favorable conditions for precipitation The large scale velocity potential pattern exhibits an incoherent structure. Anomalous upper-level divergence stretches from the eastern Indian Ocean across Maritime Continent to the SPCZ. Anomalous upper-level convergence is evident across the central Pacific. #### 200-hPa Vector Wind Anomalies (m s⁻¹) Note that shading denotes the zonal wind anomaly **Blue shades:** Easterly anomalies **Red shades: Westerly anomalies** Upper-level westerly wind anomalies remain over the westcentral Pacific Ocean with weakening easterly anomalies over southern Asia. #### 200-hPa Zonal Wind Anomalies (m s⁻¹) Westerly anomalies (orange/red shading) represent anomalous west-toeast flow **Easterly anomalies (blue shading)** represent anomalous east-to-west flow Westerly anomalies persisted across a large area from the Maritime Continent to the central Pacific (black solid box) since June. Westerly anomalies over the Pacific strengthened during late September and have shifted eastward during October, **November and early December** associated with the MJO. Longitude Time Time # Weekly Heat Content Evolution in the Equatorial Pacific Since the beginning of January 2011, positive heat content anomalies shifted eastward, while negative heat content anomalies weakened and then became positive across much of the Pacific basin. An oceanic Kelvin wave (dashed line) shifted eastward during February and March 2011. Much of the Pacific basin now indicates above- or near-normal integrated heat content. Since the beginning of August, negative heat content anomalies are evident across the equatorial central and eastern Pacific. Longitude #### **MJO Index -- Information** • The MJO index illustrated on the next several slides is the CPC version of the Wheeler and Hendon index (2004, hereafter WH2004). Wheeler M. and H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, *Monthly Weather Review*, 132, 1917-1932. • The methodology is very similar to that described in WH2004 but does not include the linear removal of ENSO variability associated with a sea surface temperature index. The methodology is consistent with that outlined by the U.S. CLIVAR MJO Working Group. Gottschalck et al. 2010: A Framework for Assessing Operational Madden-Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project, *Bull. Amer. Met. Soc.*, 91, 1247-1258. • The index is based on a combined Empirical Orthogonal Function (EOF) analysis using fields of near-equatorially-averaged 850-hPa and 200-hPa zonal wind and outgoing longwave radiation (OLR). #### **MJO Index -- Recent Evolution** - The axes (RMM1 and RMM2) represent daily values of the principal components from the two leading modes - The triangular areas indicate the location of the enhanced phase of the MJO - Counter-clockwise motion is indicative of eastward propagation. Large dot most recent observation. - Distance from the origin is proportional to MJO strength - **■** Line colors distinguish different months The MJO index has remained incoherent during the past week. #### **MJO Index – Historical Daily Time Series** Time series of daily MJO index amplitude from 1997 to present. Plots put current MJO activity in historical context. #### **Ensemble GFS (GEFS) MJO Forecast** <u>Yellow Lines</u> – 20 Individual Members <u>Green Line</u> – Ensemble Mean RMM1 and RMM2 values for the most recent 40 days and forecasts from the ensemble Global Forecast System (GEFS) for the next 15 days <u>light gray shading: 90% of forecasts</u> dark gray shading: 50% of forecasts The ensemble GFS forecasts indicate an increase in amplitude during Week-1 with decreasing amplitude during Week-2. There is no appreciable forecast eastern propagation. #### **Ensemble Mean GFS MJO Forecast** Figures below show MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) #### Spatial map of OLR anomalies for the next 15 days The ensemble mean GFS forecast indicates enhanced convection over the Maritime Continent and suppressed convection over Africa and western Indian Ocean during both Week-1 and Week-2. ### Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days #### Constructed Analog (CA) MJO Forecast Figure below shows MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) #### Spatial map of OLR anomalies for the next 15 days The CA forecast indicates some eastward propagation with enhanced convection shifting into the west Pacific during Week-1, along with an increase of suppressed convection over the Indian Ocean during Week-2. ### Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days #### **MJO Composites – Global Tropics** 850-hPa Wind Anomalies (Nov-Mar) #### Precipitation Anomalies (Nov-Mar) #### U.S. MJO Composites – Temperature - Left hand side plots show temperature anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Blue (orange) shades show negative (positive) anomalies respectively. - Right hand side plots show a measure of significance for the left hand side anomalies. Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml #### **U.S. MJO Composites – Precipitation** - Left hand side plots show precipitation anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Brown (green) shades show negative (positive) anomalies respectively. - Right hand side plots show a measure of significance for the left hand side anomalies. Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml