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ABSTRACT  

Analyzing ocean variability, understanding its 
importance for the climate system, and quantifying its 
socio-economic impacts are among the primary 
motivations for obtaining ongoing global ocean 
observations. There are several possible approaches to 
address these tasks. One with much potential for future 
ocean information services and for climate predictions 
is called ocean synthesis, and is concerned with merging 
all available ocean observations with the dynamics 
embedded in an ocean circulation model to obtain 
estimates of the changing ocean that are more accurate 
than either system alone can provide. The field of ocean 
synthesis has matured over the last decade. Several 
global ocean syntheses exist today and can be used to 
investigate key scientific questions, such as changes in 
sea level, heat content, or transports. This CWP 

summarizes climate variability as “seen” by several 
ocean syntheses, describes similarities and differences 
in these solutions and uses results to highlight 
developments necessary over the next decade to 
improve ocean products and services. It appears that 
multi-model ensemble approaches can be useful to 
obtain better estimates of the ocean. To make full use of 
such a system, though, one needs detailed error 
information not only about data and models, but also 
about the estimated states. Results show that estimates 
tend to cluster around methodologies and therefore are 
not necessarily independent from each other. Results 
also reveal the impact of a historically under-sampled 
ocean on estimates of inter-decadal variability in the 
ocean. To improve future estimates, we need not only to 
sustain the existing observing system but to extend it to 
include full-depth ARGO-type measurements, enhanced 
information about boundary currents and transports 



  

through key regions, and to keep all important satellite 
sensors flying indefinitely, including altimetry, 
gravimetry and ice thickness, microwave SST 
observations, wind stress measurements and ocean 
color. We also need to maintain ocean state estimation 
as an integral part of the ocean observing and 
information system. 
 
1. INTRODUCTION  

The procedure of ocean state estimation provides an 
important tool for combining all available observations 
into a complete dynamical description of the time-
varying ocean and its interaction with the remaining 
climate system. Results are especially useful for 
analyzing unobserved quantities, including the 
meridional overturning circulation, other transport 
properties, or air-sea interactions. Among others, such 
quantities are important information to be provided by 
ocean observing capabilities, particular for monitoring 
climate variations. In addition, the role of ocean state 
estimates in providing best possible present-day initial 
conditions for climate prediction systems is gaining 
attention and we can anticipate that in 10 years from 
now, ocean or coupled state estimations will be an 
integral component of an ocean and climate information 
and forecast system. 

The vision of ocean state estimation as a means of 
bringing all ocean observations into a dynamically 
consistent description of the global time-varying ocean 
circulation goes back to the beginning of the “World 
Ocean Circulation Experiment” (WOCE) [1], although 
it took many years for its full implementation. 
Achieving this vision required a significant 
development of the in situ and satellite observing 
capabilities, together with improvement of ocean 
models and enhanced computational capabilities. Along 
the way, the picture of a steady ocean, that could be 
described by relatively simple dynamical principles as 
embedded in box models, evolved into one where the 
time variability has become the focus of interest and 
which requires a fully time-dependent and eddy-
resolving model as a dynamical basis. Important 
milestones in this development included the 
development of inverse methods (adjoint, Kalman filter, 
etc.) that can be applied to ocean circulation models 
using supercomputers. As an example, the development 
of ocean adjoint models encompassed the existence of 
modern primitive equation (PE) models (e.g., the 
MITgcm: [2]), the development of automatic 
differentiation tools [3], their pilot applications to ocean 
problems [4-6], and for that purpose, enhancements and 
adjustments of the computer infrastructure to finally 
encompass long optimization jobs. In the case of the 
ECCO infrastructure, these accomplishments required 
close to a decade of sustained consortium efforts [5-6]. 
This development has proven to be a large endeavor that 

requires expertise in ocean observations, modeling, 
assimilation as well as information technology, which 
needs to be sustained and to have a long-term 
perspective to be effective. 

 
Today, the products from several global and regional 
ocean data assimilation systems are available. 
Underlying assimilation schemes range from simple and 
computationally efficient (e.g., optimal interpolation) to 
sophisticated and computationally intensive (e.g., 
adjoint, Kalman filters, and smoothers). Some of the 
existing assimilation products span the period of the 
past several decades and are relatively coarse in spatial 
resolution; others focus on the data rich period, roughly 
from 1992 to present and tend to be eddy permitting, 
and sometimes only regional in extension. A summary 
of most of those efforts can be found in the CWP lead 
by [7]); it is specifically provided on the web page of 
CLIVAR’s “Global Synthesis and Observations Panel 
(GSOP), 
(http://www.clivar.org/organization/gsop/synthesis/synt
hesis.php). Applications of those systems are expanding 
and already include many aspects of oceanography and 
climate research such as studies of sea level variability 
and changes (e.g., [5,6,8,9,10,11,12]), water-mass 
analysis (e.g., [13-16]), mixed-layer heat balance (e.g., 
[17-19]). For instance, estimates of volume, heat, and 
freshwater transports of the global ocean have been 
obtained by fitting models to WOCE data (e.g. [6,20]). 
Many studies have also used various ocean reanalysis 
products to study the variations of the MOC in the 
Atlantic and its relations to heat transport and heat 
content changes. The relationship between atmospheric 
variability and a local or a remote response of the deep 
ocean was investigated by [21], and feedback processes 
acting during ENSO were summarized by [22,8]) 
demonstrate the use of ocean state estimation for 
improving estimates of surface fluxes and [23-24] show 
applications of ocean state estimation for initializing 
coupled climate models. These are just examples, and 
the list could be made very long if we were trying to be 
complete.  

Because underlying models and underlying assimilation 
approaches differ, results from individual ocean 
synthesis efforts also differ. But in the absence of 
formal error information it is difficult to judge where 
the truth resides and an important step toward improved 
estimates of the time-varying ocean state and its 
transport properties is therefore to understand the 
uncertainties in each estimate, before they can be 
combined into an improved ensemble estimate. This 
step is akin to what is common practice now in weather 
prediction and what is about to be adopted also for 
ensemble climate predictions. A pre-requisite to a 
respective multi-model ocean state estimation approach 
is a thorough inter-comparison of all available state 



  

estimates so as to understand the strengths and 
shortcomings in each and thereby to allow weighted 
ensemble means that are more accurate than any single 
product.  

Respective work has started under the auspices of 
CLIVAR/GSOP’s state estimation evaluation effort, 
which was co-sponsored by GODAE. Its objectives are 
to (1) examine the consistency of the syntheses (though 
multi-product comparison), (2) evaluate the accuracy of 
these products (by comparison with observations), (3) 
estimate uncertainties, (4) identify areas where 
improvements are needed, (5) define the observational 
accuracies and requirements necessary to distinguish the 
quality of the syntheses and identify future 
observational requirements and (6) work on new 
approaches, such as coupled data assimilation. Many 
ocean reanalysis projects have participated in this effort 
that is based on many diagnostic quantities, including 
the comparison among reanalysis products and 
comparison with observations.  

 

 
 

Figure 1. A summary of all syntheses included in this 
CWP, providing global data for at least 20 years. The 
efforts were sorted by assimilation approach (3D-Var 
and/or OI, or 4D-Var), by model type (HOPE, OPA, 
POP, MOM, and MITgcm), by atmospheric forcing 
(NCEP and ERA4), and by spatial resolution. Also 
listed are additional features relevant to this analysis, 
such as relaxation in the surface layer, although these 
are not comprehensive and should indicate that these 
details are also important. 

We will use results of the synthesis evaluation effort to 
identify improvements required to move toward an 
ocean information and forecast system for climate 
research and many other applications with socio-
economic benefits. However, results presented below 
are just examples, based on only a subset of the existing 
ocean state estimates listed by [7]. The selection 
principle was somewhat arbitrarily chosen to be a focus 

on estimates covering at least several decades in 
duration. Included in the inter-comparison were all 
available state estimates that started in 1980 or before 
and include efforts that use either dynamical or 
statistical models.  

 
We observe from Fig. 1 a few important implications. 
Only z-level models are being used in long state 
estimates in the ocean and extending the spectrum to 
also include other vertical coordinates could be useful. 
At this point, state estimates in the ocean are based on 
five different primitive equation (PE) model runs with 
three different spatial resolutions. We also note that 
most of the attempts use similar data sets, but that major 
differences in the results could potentially be expected 
because of differences in the assimilation approaches 
and in the numerical details of the models. In particular, 
the way data are being used in the inversion procedure 
is important for determining the final solution,because 
the prior model and data error covariances have major 
impacts on the solution. The same holds for atmospheric 
reanalyses which show substantial difference in many 
aspects of the atmospheric state (see also CWP by [25])  
 
The syntheses shown in Fig. 1 will be used here to 
demonstrate variability of only a few important climate 
variables, notably, (1) the oceans change in heat and 
freshwater content, (2) transports of heat and 
freshwater, and (3) changes in sea level. Results are 
intended to demonstrate the state of the field and lay the 
ground for a discussion of the future pathway. 
Complementary aspects of ocean state estimation are 
discussed in the CWPs of [7,26,27]. 
 
2. GLOBAL HEAT AND SALT CONTENT 

CHANGES  

Estimated changes of the heat content of the global 
ocean suggest an overall increase in the top 700 m 
during the last 50 years. As can be inferred from Fig. 2 
(top panel), the increase is not monotonic and smooth 
but shows significant variations on all time scales. We 
can expect similar variability also to exist in future heat 
content changes (and all other climate variables for the 
same matter). A few other important observations from 
Fig. 2 are also noteworthy:  
  
1) Most results show an increase in heat content in the 

1970s followed by a “cold period” in the late 
1980s. There are only two estimates that do not 
follow this general pattern, including the 50-year 
long GECCO estimate and the recent estimate from 
[28]. The latter is based entirely on ocean 
observations, but including a XBT data set that was 
corrected for recently discovered errors arising 
from fall rate uncertainties [29].  

2) All estimates showing the increase in heat content 



  

in the 1970s are based on 3D-Var or OI sequential 
approaches, which are strongly constrained to 
match the observations. As such they directly 
follow the data used as constraints. In contrast, the 
dynamically self-consistent GECCO solution did 
reject the heat content increase in the 1970s as 
being dynamically inconsistent and thus identified 
that period as one with enhanced data errors. This 
notion is now supported by recent studies using 
corrected XBT observations, although the picture 
given by [28] is likely to change again as the 
quality of XBT data might continue to improve. We 
note that adjoint models seem to provide an extra 
benefit – besides producing dynamically consistent 
estimate – that dynamics and first principles help to 
identify problems with observations.  

3) During the 1990s we see a general increase in heat 
content; however the bulk of the estimates indicate 
a drop in heat content after 2004. We now know 
that this period was characterized by errors in the 
ARGO data propagating into the heat content 
estimate of sequential estimates and that the state of 
the observational accuracy during this period is still 
evolving.  

4) Finally, we note the large spread in all results 
toward the end of the time series, although mostly 
caused by the two shorter syntheses. This is 
counterintuitive given the fact that this period is 
best observed. We will see below that this finding 
propagates through many of the diagnosed 
quantities, pointing to a large sensitivity of the 
estimation on the underlying estimation 
methodology.  

 

 
 
Figure 2. Global heat (top panel) and freshwater 
(bottom panel) content changes 
 
Turning toward the global freshwater content of the 
ocean (Fig. 2b), the variability between all estimates is 
very large, highlighting the fact that the ocean was 
historically under-sampled, especially for salinity, and 
demonstrating a general problem of existing ocean 
simulations in determining the freshwater content from 
observations. This also affects estimates of many 
climate indices, including global sea level rise. Even 
now we are still lacking important information of 
temperature and salinity changes below the nominal 
ARGO sampling depth of about 2000 m. As a result, 

estimates of the ocean’s freshwater content are plagued 
by large uncertainties and differences in the 
methodology may cause artificial signals, dependent on 
the details of the assimilation approaches. For instance, 
the large drop in 2004 visible in the ECMWF product is 
related to the transition from the delayed mode altimeter 
maps to the real time altimeter maps, which had 
different global means. We also note that some of the 
implied variability of the freshwater content does mirror 
that of the heat content in the 1970s, suggesting that the 
often used approach of constraining the ocean by 
artificial salinity derived from a climatological T/S 
relation does lead to problems in a world of changing 
heat content (artificial or real) in the ocean. Finally, 
some estimates show a smooth decrease in freshwater 
content. Among those is the GECCO result. Several 
findings indicate that this decrease must be artificial, as 
the eustatic contribution to the sea level rise is believed 
to be positive throughout the last decades  (e.g., [30]), 
and contributions increase during more recent years 
[31].  
 

 
 
Figure 3. Heat Content time series in several ocean 
basins.  
 
While global diagnostics of climate changes in the 
ocean are important, it is usually the regional changes 
that are of largest consequence and therefore of major 
interest. Since the major basins were quite differently 
sampled over the last decades the different levels of 
agreement between the syntheses in the different basins 
may provide information about the influence of 
different observing systems. We show in Fig. 3 changes 
in the heat content, but now diagnosed (a) in the North 
Atlantic, (b) the North Pacific, (c) the Indian Ocean, and 
(d) the Southern Ocean. Again, all results represent 
changes in the heat content in the top 700 m. Most 
noticeable is the good agreement in the North Atlantic 
Ocean supported by the fact that this is the best-
observed basin. The North Pacific shows again a large 
consistency between all sequential estimates. But it is 
especially here where GECCO shows a decrease in the 



  

heat content in the 1970s and a substantial increase 
subsequently. An inspection of GECCO results in all 
panels suggest that a heat content minimum first 
occurred in the Southern Ocean in the late 1960s/early 
1970s followed by a rapid increase in heat content, that 
leveled off in the early 80s. A similar behavior can be 
seen in the North Pacific and the Indian Ocean, but 
shifted in time. The figure also suggests a decrease in 
heat content in the North Pacific since about 2000, in 
the North Atlantic a respective decrease could be 
inferred only after 2004. Finally we see a larger spread 
in all sequential estimates in the Southern Ocean and the 
Indian Ocean, reflecting the fundamental under-
sampling of both basins. This under-sampling lasted 
until recently and is responsible for the increased spread 
of global estimates toward the end of the considered 
period.  
 
 
3. HEAT AND SALT TRANSPORTS  

 

 
 

 

 
 
Figure 4. Heat and freshwater transports. 
  
Among the important quantities that need to be 
diagnosed from ocean synthesis are transport of 
properties like heat and freshwater, CO2, nutrients, 
oxygen and many other substances. To provide a few 

examples, we show in Fig. 4 transports of heat and 
freshwater across 48°N and 25°N in the North Atlantic, 
across the equatorial Pacific, and across 10°S in the 
Indian Ocean. It is obvious from the figure that, while 
integral quantities such as the heat content appear 
consistent in the North Atlantic, estimates of transport 
properties at specific latitudes do not necessarily agree, 
leading to a large spread of results in the Atlantic which 
is by no means smaller than in all other basins. This is 
not surprising since the estimated transport properties 
are most sensitive to details of the assimilation 
approaches and they may be especially sensitive to 
dynamical inconsistencies introduced during the process 
of merging data and models. The highest consistency 
appears in the tropical Pacific, where at least the phase 
(but not the amplitude) of heat transport variations 
agrees among all results, although freshwater transports 
do show an increased spread. All other time series show 
only small commonalities. 
 
 
4. GLOBAL AND REGIONAL SEA LEVEL 

CHANGES  

 
 
Figure 5. Global steric surface height anomalies 
 
A quantity of general concern is sea level and its 
variability, which represents an integral over many 
individual aspects of the ocean state. Changes in sea 
level potentially can have a substantial impact on 
society and understanding ongoing and past changes 
and their regional character is therefore of specific 
importance. We show in Fig. 5 estimates of global sea 
level changes as they follow separately from the 
thermo- and halosteric anomalies in several ocean state 
estimates. Not surprisingly, both panels reflect 
essentially the previously shown changes in heat and 
salt/freshwater content. However, it is noteworthy that 
the three estimates (GECCO, ECMWF, and 
Mercator/CERFACS), showing a significant 
thermosteric increase during the 1990s, make significant 
direct use of altimetry.  
 
Turning again to regional changes, Fig. 6 shows 
estimates of local thermosteric and halosteric SSH 
changes as they follow from three estimates 
representing the spread that exists from all available 
results. On the one end, SODA represents those results 
that use in situ profiles to correct the model’s T/S 



  

structure locally in space and time. In those approaches, 
altimetry is projected on synthetic T/S changes and only 
the latter are used as constraints. The other end of the 
spectrum is represented by the adjoint-family of 
approaches, encompassing all ECCO results, but also 
K7 from Japan. As an intermediate group we show also 
results from ECMWF, which is tuned to improve SI 
forecasts.  Results are shown for the periods 1962-2001 
and 1992 – 2001, respectively.  
 

 
 
Figure 6. Estimates of local thermosteric and halosteric 
SSH trends as they follow from three estimates 
representing the spread that exists from all available 
results. Top two rows represent the period 1962 – 2001; 
the bottom two rows represent the period 1992 – 2001. 
 
Starting with the first period (top two rows of the figure) 
we realize that estimated trends differ substantially in all 
three examples, especially between SODA and GECCO. 
This is obvious for temperature but holds equally well 
for salinity. Over large parts of the world ocean, 
GECCO results suggest that SSH changes induced by 
heat content changes and changes in salinity 
counterbalance to some extent as this would follow 
from either advection of water masses along isopycnals 
(e.g., wind- driven changes in GECCO) or imposed by 
the use of T/S relations. A respective counterbalance is 
less visible in the SODA result that contains signatures 
of eddy noise. The latter aspect is even more obvious in 
the more recent years characterized by the availability 
of altimeter data that can partly compensate for the lack 
of resolution. Nevertheless, large-scale trends in the 
thermosteric SSH now agree in all three estimates. 
Halosteric estimates also tend to converge but there 
remain substantial differences, e.g., in the subpolar 
North Atlantic. We also note that Boussinesq model 

systems cannot account for a non-conservative global 
ocean mass increase as is being observed by the 
altimeters (real ocean mass is growing due to land-ice 
melt). This has to be accounted for during the 
assimilation process by removing a global trend in the 
data.  
 
5. UNCERTAINTIES IN OCEAN STATE 

ESTIMATES  

A major issue with all data assimilation products 
currently available is that no formal estimates of 
uncertainties of the estimated states or derived 
information are provided. Primarily this is because 
computing error information may be costly and often 
not tractable (even on the largest computers available) 
given the large dimension of the problem, although no 
fundamental (mathematical) obstacle exists to do so. In 
particular for adjoint methods like ECCO/GECCO and 
K7 the error estimation process is rather costly as it 
involves the computation of the inverse of the Hessian 
[32]. However, the accuracy of these formal error 
covariance estimates is highly dependent on the 
accuracy of the error covariance estimates of the input 
fields and these are subject to considerable uncertainty. 
Estimating uncertainties of existing ocean state 
estimates therefore remains a major challenge. In 
addition to the three dimensional estimations of the 
ocean state at a given time (analysis problem), an 
uncertainty information of the time evolution is also 
required in a reanalysis, which will be sensitive to the 
time variations of the observing system, to the errors of 
the ocean model, of the atmospheric fluxes, and of the 
assimilation system, which are often flow-dependent 
and not easy to estimate. 
 
Sequential methods such as the Kalman Filter actually 
provide posterior error estimates as part of the analysis 
and could start to provide this information along with 
their estimate. However, current implementations rely 
on low rank approximations of uncertainties, which are 
also obtained during the optimization process in the 
adjoint method and it is not clear whether they are able 
to provide useful information. Reference [33] provide 
an ocean application for a relatively short period of 14 
days. Moreover, the analysis error provides only one 
part (the aleatoric part) of the error. The other part, the 
epistemic error related to the biases of the individual 
estimates, may dominate the error rendering the 
estimation of the first error obsolete. As in atmospheric 
applications, ensemble methods can help as a first guess 
of the estimation uncertainty, in a way similar to multi-
model forecasts. An ensemble spread of different 
reanalysis products can be used to get a first estimate of 
the time evolution and uncertainty of the climate 
reconstructions, although any caveat of such an 
ensemble methodology should be taken into account 
when interpreting the results. This approach was used 
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by [34] in the comparison of ocean reanalyses organized 
by the CLIVAR GSOP. Using the results presented 
above, it is now tempting to specify especially large 
uncertainties in estimated transports. 
 
The issue related to the computation of formal error bars 
for state estimation results arises in part because data 
assimilation schemes usually search for circulation 
estimates in the full space of the model. If searches are 
performed in the space spanned by only the 
observations instead, the expected analysis errors are 
more readily available. So some of the shortcomings of 
current ocean data assimilation products appear to stem 
from the approaches used. Significant efforts are 
required in the future to improve our way of performing 
optimizations, and it can be expected that in many cases 
there are better ways of performing optimizations. This 
does include expanding the parameter space so that 
model physics are improved and thereby ocean 
processes are better represented (e.g., overflow 
processes and water mass formation or conservation). 
Finally, ways of estimating initial conditions for the 
optimized state also need to be developed so as to 
minimize numerical adjustments during the first years 
of the runs, which currently plague many available 
products. 

 

 
 
Figure 7. Ensemble mean of transports plus 
uncertainties. 

Ideally each synthesis should come with an estimate of 
the analysis error and much needs to be done over the 
next years to provide progress in this specific direction. 
The error would make estimated ocean states and 
derived information much more valuable. It would also 
allow computing an ensemble synthesis with a further 
reduced error under the assumption that the estimates 
are bias-free. Assuming for the moment that all 
estimation biases are random, independent and of 
similar amplitude (certainly, as described in the 
introduction, these conditions are not likely to hold), an 
effort can be made to obtain improved transport 
estimates by averaging all available results along with 
an error estimate that includes both of the above 
described components.  
 

 
 
Figure 8. Evaluating model quantity from multi-
ensemble of results. The arrows illustrate the general 
expectance that assimilation of observations moves the 
results closer to the truth. The left panel show the ideal 
situation in which the ensemble spread and the distance 
to the ensemble mean provide useful measures while the 
right panel illustrates a biased case that is more 
realistic for the ensemble of present day synthesis. 
 
Results are shown in Fig. 7, which display the ensemble 
mean as well as the ensemble spread of temperature. 
From an inter-comparison of time series of heat and 
freshwater transports, large climate excursions are 
obvious, as we would expect from NAO, ENSO or other 
such phenomena. We also observe an anti-correlation of 
heat and freshwater transports suggesting that the net 
effect, e.g., on density, is smaller than it would follow 
from just one component. Again, observing and 
estimating all components of the ocean state are 
required for quantitative applications. In all panels we 
see the tendency to an increased spread toward the end 
of the estimate period, suggesting that solutions during 
the earlier years are mostly determined by the surface 
forcing and perhaps similar initial conditions, while data 
impacts and the details of underlying assimilation 
procedures are especially large toward the end. This 
could suggest that at least some of the assimilation 
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results are more biased than others and do not make 
maximum use of the data and the dynamics embedded 
in the model. This result could suggest that the 
relatively good agreement in the early years just reflects 
common biases in all estimates.  
 
Two questions could now be raised that should prevent 
us from being either overly optimistic if results agree or 
from being overly pessimistic if they do not: 
 
●Does agreement among several solutions have 
anything to do with confidence in the results and do 
ensemble averages provide better approximations to the 
truth? This is a necessary condition since there is only 
one truth. In order to apply this as a sufficient condition 
the results need to be randomly distributed around the 
truth as indicated in Fig. 8a. In this case ensemble 
averages are better approximations to the truth and the 
deviation to the ensemble mean serves as a means to 
assess a particular synthesis. Moreover, assimilation is 
expected to move each solution towards the truth, which 
will cause a reduction in ensemble variance that can 
then be used to assess the success of the assimilation. 
However, we can see from Fig. 1 that syntheses based 
on common approaches lead to similar results. Fig. 2 
nicely demonstrates this feature, and one has to 
carefully evaluate whether the estimates can be regarded 
as independent before conclusions about uncertainty are 
drawn. 
 
●Do we expect that data constraints will bring different 
models closer together and thus closer to the truth? The 
latter again is a necessary condition - at least for the 
assimilated data. However, results based on the same 
underlying model employing different data and/or data 
assimilation schemes may diverge. In this case, as 
illustrated in Fig. 8b, the assimilation process may 
increase the ensemble spread and neither the spread nor 
the closeness to the ensemble mean have any 
significance and one has to be careful not to expect a 
greater agreement among syntheses than for pure 
simulations. A comparison with the results from the 
corresponding reference experiments (without data 
assimilation) could provide further insight in the present 
results, although this was not yet attempted. The largest 
challenge for future synthesis products will be to 
provide realistic error bars that are consistent with 
independent data. 
 
6. THE WAY AHEAD 

Ocean state estimation was developed over the last 
decade, envisioning that it will become a firm element 
of an ocean observing and information system, 
providing the best possible description of the time 
evolution of the ocean after merging available ocean 
observations with the dynamics embedded in ocean 
circulation models. Today this goal has been reached in 

a prototype fashion, although many problems remain 
which require specific attention during the next decade. 
Meanwhile, a suite of regional and global ocean 
synthesis products is already available with varying 
horizontal resolutions, extending up to 50 years in 
duration. The number of studies using these products for 
oceanographic and climate-related studies already 
covers a wide range of topics, including the 
initialization of coupled climate models, and the 
computation of climate indices. For the years to come it 
will be essential for the community to recognize the 
value of ocean state estimation and to expand their 
applications of ocean synthesis products for research 
and information services alike.  
 
Ongoing synthesis comparison efforts reveal a large 
spread in some of the results, especially in terms of 
ocean transport. Quite clearly, the spread to some extent 
is due to different approaches, underlying data sets, or 
differing control terms. However, we also note that the 
spread, at least in terms of heat and freshwater content, 
increases toward the end of the data record 
characterized by the largest number of observations. 
This is counter-intuitive, suggesting that the shown 
syntheses moved further away from reality toward the 
end of the runs. The situation will be different in shorter 
runs covering only the period after about 1990, 
however, there will be other problems, e.g., those 
related to initial numerical drifts. Since the spread 
toward the end of the assimilation period is induced by 
the assimilated data (representing the truth), an 
optimistic expectation would be that the obtained states 
are for these last years more randomly distributed 
around the truth for these last years. If that is true, 
ensemble means would provide better estimates which 
are less prone to common biases. 
 
To increase the value of ocean state estimation products, 
much effort is needed over the next decade to 
characterize the uncertainties in each synthesis product 
and to improve them through advanced assimilation 
approaches. The outcome should be a merged, 
weighted, ensemble mean to produce better estimates 
and reduced uncertainties relative to what can be 
obtained from one approach alone. A concerted 
comparison effort based on runs with the same data, 
period, etc., and expanded analysis looking at 
controls+analyses+innovations to understand existing 
differences and to learn how to improve results seems to 
be one of the important next steps. At the same time 
formal uncertainties for each estimate are required, 
which, once available, would quantify the quality of 
each, at least according to its assumed statistical inputs.   
 
Until formal error bars are provided, and shown to be 
reliable, we can only speculate as to why we obtain 
differences between synthesis approaches. Supported 



  

through the division into two clusters, it appears that the 
assimilation approach itself does have a substantial 
impact on the result, probably more so than slight 
differences in the constraining data. In particular, we see 
a clear separation of results clustered into adjoint 
smoother estimates and filter approaches. Both make 
different use of the data and the underlying model 
dynamics and as can be seen from Fig. 6, filter 
approaches lead to more noisy results and appear to be 
more slaved by individual data than are smoothers using 
all data over a long period. The effect is that in filter-
approaches the insertion of new data leads to local 
unbalanced anomalies which set of adjustment 
processes in the form of planetary waves, which 
subsequently imprint themselves on integral quantities 
like heat transports. All model results shown here have 
roughly the same resolution but use data differently 
(comparing results with a differing resolution we do 
anticipate similar spreads in the solution as we see it 
from process-oriented forward modeling). Because of 
this ocean processes are also represented or corrected 
differently. As an example, the insertion of temperature 
and salinity in filter approaches maintains water masses 
that are being created, e.g., through mixing processes up 
stream. In contrast, smoother efforts do not insert data 
but attempt to have the model simulate them through 
changes in control parameters, such as surface forcing. 
This implies that missing physics like mixing needs to 
be compensated for through changes in surface forcing. 
Yet smoother methods provide the opportunity to 
include mixing and water mass formation as a control 
parameter and thereby to improve the model physics 
through parameter estimation. This process will allow 
improvements in overflow and mixing processes during 
the assimilation effort in the future. 
 
But in general terms, ocean state estimation products 
can only be as good as the data provided and at the same 
time require best possible model representation. State 
estimation efforts therefore need to be tightly coupled to 
model development and improvement efforts as 
described in the CWP by [35]. We envision especially 
that the field of ocean state estimation will move toward 
coupled assimilation efforts. First pilot applications 
exist today and several others are in the process of 
spinning up. The move towards coupled state estimation 
activities will lead to improved ocean information for 
coupled forecasts ranging from near-term to seasonal to 
decadal time scales. It should also be acknowledged that 
there is a need for regional synthesis efforts also using 
high resolution regional models, high resolution and 
high quality atmospheric forcing products, good quality 
bathymetric data, etc., since many of the socio-
economic problems associated with climate variability 
and climate change will be manifested at the regional 
scale. 
 

At the same time, ocean state estimation has a deep 
need for high-quality ocean data, especially that 
covering the decades before the 1990s and possibly 
going back to the beginning of the century. Recent 
issues around biases and quality control highlight this 
need and community efforts need to be stepped up 
around this issue. This quality-control process can build 
firmly on the estimation process itself as was shown by 
the GECCO results (e.g., [36]. It is are already part of 
the AGRO quality control system [37]. In fact, residuals 
from dynamically consistent estimation approaches are 
a valuable result that needs to be evaluated with respect 
to uncertainties in observations and models alike. At the 
same time estimation approaches need to be used much 
more in the future to guide the evolution of the 
observing system than it was done in the past (see also 
the CWP by [27]. As mentioned above, having full 
depth hydrographic information in the open ocean and 
under sea ice appears a very important step towards 
improved estimates of sea level, but also of the 
hydrological cycle. Those data sets should be 
complemented by boundary current transport 
information, e.g., like the Florida Current. The 
consequence of the failure of various models to properly 
represent the vertical structure of the overturning [38] 
for climate studies is yet unknown and we can logically 
expect them to be significant on decadal timescales. 
However, it remains to be tested if density information 
directly at the boundary will improve the estimates of 
MOC above what a broad-scale observing system 
provides, including satellite surface height information. 
 
Anticipating further improvements, we expect that over 
the decade following OceanObs’09 ocean state 
estimates will be an essential part of the infrastructure 
that will provide information about the time-varying 
ocean on a regular basis and for many scientific 
applications and climate services. As part of this, we 
envision a regular evaluation of the ocean state over the 
full water column, providing information about 
important ocean indices to the community at large on a 
regular basis. Furthermore, we expect ocean state 
estimation to become an important part of seamless 
climate predictions, including seasonal, interannual and 
decadal timescales. Efforts for the longer time scale 
have started under the IPCC umbrella, but much has to 
be learned about the best use of ocean data and ocean 
information before forecasts become quantitative. It can 
also be expected that best forecasts will be produced by 
coupled models that can be directly constrained by 
climate data (coupled data assimilation). Regardless of 
what the application will be, we need to spend 
significant effort to improve the quality of ocean state 
estimation products. This will involve an improved use 
of existing data by incorporating full error covariances 
about data and models. Such information does not exist 
currently, and we expect as part of an evolution of the 



  

observing system to include more information about 
uncertainties of observations.  
 
Essentially, after a decade of development, the 
community is now ready to use ocean state estimation 
tools on a routine basis as part of an observing strategy 
to extract information out of the existing observing 
system, and to help to improve the observing system so 
as to maximize the amount of information that can be 
extracted. To do this in a most efficient way, a long-
term ocean synthesis strategy is required, similar to 
what is ongoing in the atmospheric reanalysis 
community. The benefit of such a long-term perspective 
will be that an expertise and an infrastructure can be 
built up and maintained. Observations are the essential 
input for ocean state estimation. However, we should 
think of ocean state estimation as an integral part of the 
observing strategy, not a customer, capable of 
delivering important information about the changing 
ocean state.  
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