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ABSTRACT

A method is proposed to calculate measures of forecast skill for high, medium and low temporal frequency
variations in the atmosphere. This method is applied to a series of 128 consecutive 1 1o 10-day forecasts produced
at NMC with their operational global medium-range-forecast model during { May-5 September 1988. It is
found that over this period, more than 50% of the variance in observed 500 mb height fields is found at periods
of 18 days or longer. The intuitive notion that the predictability time of a phenomenon should be proportional
to its lifetime is found to be qualitatively correct; i.e., the low frequencies are predicted (at a given skill level)
over a longer time than high frequencies. However, the current prediction skill in low frequencies is far below
its potential if one assumes that for any frequency the predictability time scale ought to be equal to the lifetime
scale. In the high frequencies, however, the current prediction skill has already reached its potential; i.e., cyclones
are being predicted over a time comparable to their lifetime; i.e. 3 to 4 days. We offer some speculations as to
why the low frequency variations in the atmosphere are so poorly predicted by our current state-of-the-art
models. The conclusions are tested, and found to hold up, on a more recent dataset covering 10 December
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1. Introduction

In an intuitive sense, the predictability of a specific
atmospheric phenomenon has to be proportional to
its own lifetime. Nobody tries to forecast the timing of
tomorrow’s cumulus clouds, or the passage of an ex-
tratropical cyclone two months ahead of time. Appar-
ently we restrict prediction of certain phenomena to
forecast lead times less than, or at most comparable
to, the lifetime of these events. This strategy allows us,
in practice, to first observe the early stages of a partic-
ular development before attempting to forecast the rest
of its life cycle. The proportionality of lifetime and
predictability time plays an important role in the theory
of predictability of two-dimensional flows (Lorenz
1969; Lilly 1973). '

If there is any truth in the above assumption one
must expect the predictability of short-lived events to
be short, while long-lived events should be predictable
out to much larger lead times. Because there is consid-
erable energy at low frequencies in 500 mb height vari-
ations (Blackmon et al. 1984) there is, in that fact alone,
some basis for hope in long-range weather prediction
(LRWP).

Every day operational centers such as the National
Meteorological Center (NMC) in Washington, D.C,,
produce operational numerical weather predictions
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(NWP) of large-scale fields such as 500 mb height, out
to 10 days ahead. The question is: How well are the
high, medium and low frequencies, as observed in na-
ture, forecast by these state-of-the-art models? Is pre-
diction skill (a practical measure, subject to improve-
ment) a function of lifetime in the way we envision
predictability (a property of the fluid) to be a function
of lifetime?

Surprisingly, to our knowledge, that question has
never been answered directly. This can be explained
primarily from the fact that it is not evident how one
filters forecasts in time. Also, at one particular time
one cannot determine the state of the atmosphere at a
given temporal frequency. It is only after the fact that
one can analyze the observations in terms of variations
at certain frequencies and ask the question: How well
were these variations predicted by a particular NWP
model? Readily available standard verification scores
include root-mean-square (rms) errors and anomaly
correlations (AC) as a function of lead time. These
and related scores are often broken down for several
distinct spatial-wavenumber bands (Boer 1984; Savi-
jarvi 1984; Dalcher and Kalnay 1987) and may, by
relating space and time scales, indirectly answer our
question. However, the relation between time and space
scales is nontrivial (Blackmon 1976; Straus and Shukla
1981). Therefore we offer here a direct approach by .
applying a filter in the time domain before calculating
various verification scores.

Some readers may believe that a forecast out to 10
days deals with time-scales less than 10 days. But that
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is not the case as seen from the following example. One
can make a model for the annual cycle (and nothing
else) and integrate that model 10 days into the future
and ask the question: How well did we forecast this
phenomenon with a 365 day time scale? Similarly we
can ask: How well does NWP predict in a given low-
frequency band 1, 2, ..., 10 days ahead? Of course a
direct Fourier transform of ten data points in time
would erroneously fold the low-frequency variance into
the resolved periods (i.e., 2-10 days).

There is a class of literature in which the prediction
skill (Miyakoda et al. 1986) or predictability (Shukla
1981; Tribbia and Baumhefner 1988) of monthly
means is discussed. This monthly mean is taken over
daily forecasts (day 1-day 30) generated by NWP in
an attempt to isolate the “low frequency variations.”
However, a monthly mean is a crude filter, not only
for its spectral properties but even more because it av-
erages very good (day 1 ...) with very poor (... day
30) forecasts, thus yielding a product that, skillwise,
has a very short effective lead time. {Some of the ad-
vantages and disadvantages of averaging daily forecasts
into a time-mean forecast have been listed in Van den
Dool (1985).] We will describe a time filtering tech-
nique that allows us to study skill of forecasts of low
(as well as medium or high) frequencies as a function
of forecast lead time (day by day).

In section 2 we discuss data and analysis—the time
filter in particular. Section 3 features the results while
some possible implications and speculations are offered
in section 4.

2. Data, analysis and time filtering

We study a set of 128 contiguous 10 day forecasts
made at NMC once daily at 00Z, by the operational
medium range forecast (MRF) model. The period
covers 1 May 1988 to 5 September 1988. The fields
used in this study are 1000, S00 and 250 mb height;
the spatial coverage is global. The MRF model is a
global spectral model truncated triangularly at zonal
wavenumber 80 (T80). In our analysis we use only
T20 data as it contains the bulk of the height variance.

Before discussing the problem of time filtering, it is
necessary 1o first define the anomaly correlation (AC)
as
Z ZFA
t nm

= (z SF2y 5 AIZ}I/Z

t nm t nm

AC

(1)

where we sum over time ¢, and over two-dimensional
(n) and zonal wavenumber (m). Here F” is the forecast

anomaly: forecast (F) — climatology (C) and 4'is the

observed anomaly: initialized analysis (4) — C. The
monthly climatology (based on 1978-85) was inter-
polated from the nearest two calendar months to the
date (¢) in question. Note that in (1) we sum in spectral
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space while more often the AC is obtained by summing
in gridpoint space with appropriate weighting. Abbre-
viating covariance and standard deviation to “cov” and
“sd,” respectively, we can write symbolically:,

COVEy

AC = dposd,

(1a)

There are probably two basic options for time-fil-
tering forecasts. The first is to take each 1 to M day
forecast separately and apply a time filter to the M
elements. [ Averaging over a month falls in this category
(Miyakoda et al. 1986).] Often M (10 in our study) is
too small for any meaningful time filtering. Fourier
analysis aliases/folds the high/low frequencies into the
five resolved frequencies, and a numerical filter cannot
be applied on just ten elements. An additional problem
is the inhomogeneity of the time series due to climate
drift.

The second option, followed here and detailed below,
is to place 128 N-day forecasts (N =0, 1, - - -, 10)in
time sequence. These 128 N-day forecasts, verifying on
successive days, constitute, in the second option, a time
series to which the time filtering can be applied (see
details below). It is the length of the time series (128

-in our case) that allows us to study high, low and me-

dium frequencies at a given lead time N. This yields a
detailed answer to the question about forecast skill in
a given frequency band as a function of lead time. Even
for N = 1, forecasts out to only 1-day, it is possible to
calculate the forecast skill in the low frequencies. Con-
trast this to option 1 where the only way to address
low frequencies is to increase the lead time.

One can argue whether a set of consecutive forecasts
is a time series. Some ambiguity could exist about the
notion frequency, as seen from the following extreme
example. Suppose a model predicts, every day, pure
persistence (i.e., frequency zero in a given model run).
A Fourier analysis of such forecasts, in the manner
proposed here, will yield a full spectrum nevertheless.
Such ambiguities probably do not exist in forecasts
made by state-of-the art models. Another difficulty to
consider is serial decorrelation. For large N, forecasts
decorrelate not only from the observations but also
from each other; i.e., a time series of 8 day forecasts is
more random in time than the verifying observations.
This leads to spurious transfer of variance towards the
high frequencies, and hence sdr at a given frequency
may no longer be trusted. However, because sdr, for
each frequency band, should ideally be equal to sd, we
replaced (1a) by a pseudoanomaly correlation AC*
given by

COVry

AC* = —=-, 1b

SdA2 ( )

and hence the verification depends only on the co-
variance.



130

We will follow the second option. By taking advan-
tage of some properties (detailed below) of the anomaly
correlation it turns out that time filtering the obser-
vations only is enough for our goals. Hence we decided
to not time filter the forecasts at all. The observations
[i.e., the anomaly time series A'(¢}] are time filtered
as follows. For each (7, m) within the T20 truncation,
a time series is constructed such that:

A'(#) = Re(4(8)) + Im(4;(2))

where (£ = 1,128) and real and imaginary refers to the
spatial spherical harmonics decomposition. These se-
ries were then subjected to a discrete Fourier transform
where

64 '
A1) = 2 (ay cos(kt) + by sin(kt))

k=0

(2)

and similarly (and independently) for 4;(¢). Filtered
time series were then obtained by transforming back
after zeroing out certain (a, by) as desired. We con-
structed three broad frequency bands named high, me-
dium and low, i.e., high: periods of 2-6 days (k = 22~
64), medium: 6-16 days (k = 9-21) and low: 18 to
128 days (k = 0-8). A fourth band named “all” con-
tains all frequencies, i.e., the unfiltered data. The high-
frequency band coincides very nearly with the fre-
quency range referred to as bandpass filter (Blackmon
1976; Wallace et al. 1988) used to study transient eddies
and to define storm tracks. The low-frequency band is
obviously of prime interest for long-range weather pre-
diction (LRWP).

Time filtering the observations will be enough for
some of the vertification statistics. For example, the
term in (la) that describes the decrease of AC with
forecast lead time is covgy, while sdz and sd4 are (or
ought to be) nearly independent of forecast lead time.
Because of temporal orthogonality [using (2)] and
summing over all time {as in (1)], the product F’A’is
nonzero only for those frequencies & that have nonzero
amplitude (a, by # 0 in (2)) in both the A'(¢) and
F'(t) time series. Hence filtering F', is, when studying
covg,, done implicitly by filtering A’ alone. Note that
this method does not work for rms errors because ex-
plicitly filtered F’'(¢) would need to be available for
that purpose, and therefore we will not discuss rms
verification statistics in this paper. Finally, we point
out that even though the power spectrum of the F'
time series is distorted (as a result of which sdr cannot
reliably calculated ) the estimate of covg, is not biased.
Energy in the F' series that has been transferred to the
wrong (= higher) frequencies is not expected to co-
vary with the observations at these frequencies.

Of course Eq. (2) is not a perfect filter. The time
series is not periodic, for example. A digital filter [ex-
ample: Wallace et al. 1988, Table 1) has better char-
acteristics in this regard but would yield filtered data
only in the interior portion of the record of 128. Also
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our (or any other) definition of high, medium and low
is somewhat arbitrary. But with only broad band res-
olution sought, Eq. (2) will be a good enough spectral
transform to distinguish prediction skill in low, me-
dium and high frequencies.

3. Results
a. Unfiltered statistics

The AC as a function of lead time for 500 mb heights
during the 128 day period chosen is shown in Fig. 1.
On the global domain AC decreases to 0.6 in 4.2 days.
At day 5 the AC is clearly positive but from Fig. 1
alone we cannot tell whether we predict (with partial
success) the second generation cyclones or the early
stages of low frequency events.

It is worthwhile to discuss, on the basis of Fig. 1,
how we define the time over which we can (currently)
predict the atmosphere. At lead times between 1 and
10 days the forecasts are neither perfect (AC = 1) nor
worthless (AC = 0). We therefore propose to use an

-integral time scale. In the spirit of Leith (1973) who

sought to calculate the time between effectively inde-
pendent data points from the autocorrelation we chose
here the e-folding time (AC = 0.37) as the integral
time over which we can predict the atmosphere. This

. is appropriate as long as AC decreases exponentially

(actually the decay is very slightly steeper than expo-
nential ). For a red noise process the integral time scale
is uniquely determined by the autocorrelation at one
lag only. Here we replace the autocorrelation by the
AC, which is close to an autocorrelation function fol-
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FIG. 1. The anomaly correlation [Eq. (1) in text] for global 500
mb height fields as a function of forecast lead time. The period is 1
May 1988 through 5 September 1988. Horizontal lines are drawn at
anomaly correlation scores of 0.6 and 0.37.
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lowing the fluid’s motion. (We do not propose the e-
folding as a practical limit of predictability.) Using
these notions the prediction time is 6.7 days for all
frequencies together.

Another statistic, which is less often published, is
the AC as a function of spatial scale, shown here in
Figs. 2a and 2b. In order to construct Fig. 2a we first
summed the three terms in Eq. (1) over all » for each
m before applying the equation to yield AC as a func-
tion of m, AC(m). Similarly Fig. 2b was obtained by
summing over all m for each n. Shown are AC(m)
and AC(n) for lead times of 1, 3, 5, 7 and 10 days.
There is obviously a loss of forecast skill at all scales
but this loss is clearly dependent on spatial scale. Very
soon into the forecast the spatially short waves lose
prediction skill, and by day 5 only m = 1 to 4 and n
= 1 to 8 surpass the 0.6 AC point. The results for AC(n)
agree broadly speaking with those by Boer (1984) in
his Fig. 3. We also note the bias-type error in n = 0
(global mean mode; Saha and Alpert 1988) and m =0
(the zonal mean modes; White 1988).

'b. Time-filtered statistics

In Table 1 we tabulate some definitions and quan-
tities pertaining to the time filtering. The overall ob-
served temporal variance in 500 mb height, integrated
over all spatial scales, is seen to reside for 15.2%, 26.6%
and 58.1% in the high, medium and low frequencies,
respectively. Again (compare Blackmon et al. 1984)
we are impressed by the large amount of variance in
the long time scales. (Of course the 15% height variance
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FIG. 2a. The anomaly correlation [Eq. (1) of text] for global 500
mb heights as a function of zonal wavenumber for forecast lead times
day 1, 3, 5, 7 and 10.
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FIG. 2b. As in Fig. 2a but for two-dimensional wavenumber.

in the high frequencies may translate into a lot more
variance in traditional weather elements.)

As outlined in section 2 we can decompose COVry
into the contributions from the three frequency bands.
This is done in Fig. 3. Plotted are the covariances for
the low, medium and high frequency bands as well as

" their sum labeled ““all”—the covariance being additive.,

This figure reflects mostly the amount of variance
present in each band, see Table 1, especially at short
lead times. Nevertheless it is obvious that at large lead
times (10 days) the low frequencies dominate in the
total covariance. But some sort of normalization, as
done in ( 1), would be desirable. We do not have time-
filtered forecasts from which sdr can be calculated for
reasons explained in section 2, but given that sdg, for
each frequency band, should ideally be equal to sd4 we
feel confident using the pseudoanomaly correlation
AC* defined by (1b). Both quantities in Eq. (1b) can
be calculated without filtering the forecasts and hence
their ratio is known for each frequency band. The re-
sulting pseudo AC* is shown in Fig. 4. The curve for
“all frequencies” in Fig. 4 is nearly identical to that in

TABLE 1. Definition of frequency bands, the value of 7}, and the
amount of height variance in each band.

High Medium Low
Frequency (cycles/128 days) 22-64 9-21 0-8
Period (days) 2-6 6-16 18-128
Central period, T, (days) 3.7 9.5 39.5
Observed variance (gpm?) 729 1269 2773
Fraction of observed total
variance (%) 15.2 26.6 58.1
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F1G. 3. The decomposition of covgs [numerator of Eq. (1b) in
text] labeled “all,” into the additive contributions from “low,” “me-
dium,” and “high” frequencies, as a function of forecast lead time
for global 500 mb height fields. Unit is (geopotential meters)?.

Fig. 1 [except for assuming sdz = sd4; in reality the
first is smaller than the second, a well-known model
deficiency (Arpe and Klinker 1986; White 1988)].
From Fig. 4, a main result of this paper, it can be
seen that AC* decreases to 0.6 after about 2, 4 and 5.5
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FIG. 4. The pseudoanomaly correlation [Eq. (1b) of text] for
“high,” “medium,” and “low” frequencies as a function of forecast
lead time for global 500 mb height fields. The curve labeled “all”
refers to unfiltered data.
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days for the high, medium and low frequency bands,
respectively. In the same order the e-folding time scales
are 3.4, 5.9 and 8.4 days. This ordering is consistent,
at least qualitatively, with & priori expectations stated
in the Introduction. At day 5, it turns out, there is
virtually no skill (certainly no useful skill) in the fore-
casts of second or third generation cyclones. There is
however, at first sight, considerable skill (AC* greater
than 0.6 ) in the forecast of low frequency events 5 days
into the future.

As previously noted, in Fig. 1 the AC* e-folding
times are appropriate measures of the prediction time
scale because AC* decreases very much like an ex-
ponential function (slightly steeper in fact). In Fig. 4
this is true for each of the frequency bands as well.

The lifetime of atmospheric events in a frequency
band (kl1, k2) is determined by the central period 7,
which is calculated from

k1 ki1
128/Tc = kc = z k¢zz(k)/z ¢zz(k)
k2 : k2

where ¢ ,,(k) is the variance spectrum of the observed
height field.

In Table 2 we compare the AC* e-folding times for
the three frequency bands to the central period ( 7..) of
each band. The ratio of these two time scales is given
in line 4. The ratio is about 1 for high frequencies,
meaning that the integral prediction time scale is
roughly the same as the mean lifetime of those events.
In contrast, the ratio is only 0.21 for low frequencies.
Apparently we have forecast skill only during the early
one-fifth of the low frequency events. (Note that we
have not removed the systematic forecast error, and
there is no doubt that the low frequency AC* suffers
more from the systematic error than the high and me-
dium bands.)

A similar assessment follows from comparing e-
folding time scales in Table 2, line 2, with the lead time
at which the AC for a persistence forecast has decreased
to 1/e. Persisting the initial state yields a common
control for skill. We did not actually persist the initial
states for each band but calculated a proxy AC by

TABLE 2. For each frequency band: time at which AC* has dropped
to 0.6 (1) and 1/e (2) respectively; central time T (3), persistence e-
folding (5), and ratios of these times (4) and (6).

High Medium Low
(1) AC* = 0.6 (days) 2.1 4.1 53
(2) AC* e-folding (days) 3.4 5.9 8.4
(3) T.(days) 3.7 9.5 39.5
) 2)/(3) 0.92 0.62 0.21
(5) Persistence e-folding (days) 0.7 1.8 7.5
6) (2)/(5) 4.9 33 1.1
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FIG. 5a. Time-space spectral decomposition of observed variance
in global 500 mb height fields. As a function of zonal wavenumber,
we have plotted the total variance (all), and the variance contributions
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where w = 27 /T,, and determined the lead time (7)
at which the proxy AC has fallen to 0.37 (roughly
0.19T,). Of course the persistence integral time-scale
increases with decreasing frequency. Table 2 shows that
the MRF model has skill five times longer than per-
sistence in the high frequencies while barely outper-
forming persistence in the low frequencies. Therefore,
the real gain of NWP over easily obtainable controls
(such as persistence) is primarily in the high frequen-
cies, a theme also underlying the results of Saha and
Van den Dool (1988).

Next we discuss how well time and space scales are
related. Figures 5a and 5b show the distribution of the
observed variance for the three frequency bands and
their total as a function of zonal (Fig. 5a) and total
(Fig. 5b) wavenumber. In zonal wavenumber space,
the maximum in variance is at m = 1 (generally from
m = 1 to 4) for all, low and medium frequency bands.
At high frequencies the distribution is surprisingly uni-
form with only a weak maximum at m = 6. Plotted
against total wavenumber (Fig. 5b) the observed vari-
ance peaks very strongly around #n = 6-8 (not unlike
Savijarvi 1984, his Fig. 5 curves labeled transient ) with
a shift towards n = 9 to 10 for higher frequencies. Al-

AC(7) =
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though there is some tendency for high wavenumbers
to go along with higher frequencies, the separation is
not very satisfactory, especially for zonal decomposi-
tion. Note for instance that the commonly applied sep-
aration into m = 1 to 3 (planetary), m = 4 to 9 and
m = 10-20 (synoptic) (Bengtsson 1985, his Fig. 1a)
has a lot of high and low frequency variance deposited
into the “wrong” bin. In fact, there is almost no vari-
ance at all in the m = 10-20 band. Our results are
similar to Blackmon’s (1976) in this respect.

¢. Geographical dependence

So far we have discussed results for the globe as a
whole. For smaller domains AC* can be calculated as
well, except that we have to sum in physical space with
area weighting, rather than summing in spectral space
as in (1). Results will be presented for the following
domains: 30°-60°N (NH), 30°-60°S (SH), 30°S-
30°N (TR) and (again ) the whole globe (G). In Fig.
6 we have four panels, one for each frequency band.
In each panel the decrease of AC* with forecast lead
1s given for each of the four domains. The description
and conclusions above seem to apply more or less ev-
erywhere. The only noteworthy exception is the ex-
tremely low skill in the tropics (TR) in the low fre-
quencies. (This is rather disturbing since tropical-
midlatitude interaction is often quoted as a source for
enhanced predictability in the higher latitudes.) We
have to remember, though, that the height variance is
very low in the tropics in all frequency bands. Except
in this small section, all results pertain to the globe as
a whole.
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FIG. Sb. As in Fig. 5a but for two-dimensional wavenumber.
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4. Conclusion and discussion

We propose a method to calculate forecast skill as a
function of temporal frequency. This can, for such
measures as the anomaly correlation (AC), be achieved
by time filtering the verifying observations only, and
by a harmless alteration of the definition of AC (into
a pseudo AC*). One thus avoids the difficult problem
of time filtering the forecasts directly. To apply the
method a large set of consecutive forecasts plus veri-
fying analyses should be available.

We applied the method to a set of 128 consecutive
1-10 day global 500 mb height forecasts produced op-
erationally at NMC with their MRF model during
May-September 1988. Characterizing the prediction
time scale by the forecast time at which AC* has e-
folded we reach the following conclusions. (i) Low fre-
quencies are predicted over a longer time (8.6 days)
than high frequencies (3.8 days). (ii) In the high fre-
quencies we find prediction skill over the full life cycle
of events in that band, whereas in the low frequencies
prediction skill is restricted to the early one-fifth of
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TABLE 3. As in Table 2 but for 10 December 1988-16 April 1989.

High Medium Low

(1) AC* = 0.6 (days) 34 5.0 8.3

(2) AC* e-folding (days) 4.8 6.7 12.0

(3) T.(days) 3.6 9.4 455

) @)/(3) 1.33 0.71 0.26
(5) Persistence e-folding

(days) 0.7 1.8 8.6

6) (D)/(5) 6.9 3.8 1.4

events only. (iii) Major gains in forecast skills over
easily available controls (such as persistence ) are made
primarily in the high frequencies.

We have investigated 1000 and 250 mb heights along
with the 500 mb heights on which the discussion has
been based so far. As it turns out the results are nearly
the same for these three levels. The ratio of AC* e-
folding to the central period is identical at the three
levels with perhaps one notable exception. At 1000 mb
the AC* e-folding for low frequencies is about 11 days,
which is 2.5 days longer than at 500 and 250 mb. We
speculate that at low levels the forecasts benefit from
the specification of observed lower boundary conditions
(sea surface temperature, etc.) which are held fixed
during the 10 day forecast run, but are updated at each
initial time. Not surprisingly this benefit is visible only
in the low-frequency skill. A parallel experiment with
prescribed climatological lower boundary conditions
being unavailable, we can offer the above only as a
likely explanation. The seemingly better prediction skill
at 1000 mb may also be an artifact of the analysis/
forecast/climatology of a surface that is below the
ground in many areas.

The results presented thus far are for a particular
128 day period. Some dependence on the sample
should be present, especially in the low frequencies.
To check the stability of our results we repeated all
calculations for an independent 128 day period, 5 De-
cember 1988-16 April 1989. The results are summa-
rized in Table 3, which is as Table 2 except for the
more recent 128 day period. Because the annual cycle
in the AC calculated for 500 mb height over a global
domain is dominated by the annual cycle in the North-
ern Hemisphere, the e-folding times for AC* in Table
3 are all higher than those in Table 2. Nevertheless it
is evident that the major conclusions are unchanged.
In the low frequencies the ratio of prediction time to
lifetime is 0.26 in (NH) winter, while it is 0.21 in (NH)
summer.

The most optimistic interpretation of Table 2, line
(4), is that if a ratio of about 1 is feasible for all time
scales, there is tremendous potential for improvement
in forecast skill ahead of us, especially because the low
frequencies carry the bulk of the variance. On the re-
alistic side one can ask: Why is the skill below potential
in the low frequencies? Also, can we expect to do any
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better than we currently do in the high frequency tran-
sient eddy time scales, which has been the primary
focus of NWP for about 40 years? After all, here the
ratio is already about 1.

It may be a bit too optimistic to assume that the
ratio of prediction time to lifetime could ideally become
1 for all frequencies. We tested this assumption by per-
forming a predictability experiment of the type de-
scribed in Lorenz (1982). We essentially try to estimate
here the ratio of predictability time and lifetime. De-
noting F(N) as the N-day forecast verifying against 4
we calculated, see (1b), AC* = COVErnyrv+1)/ sd4> for
N =11t09. We now had to time filter time series of
128 N-day forecasts F’'(¢). This is not an ideal pre-
dictability experiment because of the rather severe cli-
mate drift in the MRF. To mimic a situation without
climate drift we removed the time-mean forecast
anomaly. From a plot like Fig. 4 we obtained as e-
folding predictability times 4.5 days for the high fre-

_quencies, and about 15 days (well outside the range of

1 to 10 days) for both low and medium frequencies.
To the extent we can trust predictability estimates ob-
tained from a state-of-the-art NWP model, it seems
that the ratio may ultimately not reach 1 in the low
frequencies. Nevertheless there is room for improve-
ment of the prediction time scale in the low and (es-
pecially) medium frequencies. Note also that the ratio
may be somewhat higher than 1 in the high as well as
medium frequencies.

In this paper we have not addressed the problem of
the notion “scale.” Both in time/space, a perceived
short/small scale phenomenon may project onto a
broad spectrum, including long/large scales, when us-
ing Fourier modal series. Some of the transient variance
found in zonal wavenumber 2 may reflect the inade-
quacy of the modal representation, and a given cyclone
may, over its lifetime, deposit variance in different fre-
quency bands, which would make the linkage of life-
time and prediction time complicated.

Another difficulty in interpretation concerns the
distinction of Eulerian and Lagrangian time scales. For
large-scale clouds a fine analysis of that distinction was
presented by Cahalan et al. (1983). If a NWP model
were a perfect “advector,” then a presentation of skill,
such as in Fig. 1, seems to refer to the Lagrangian time
scale of 500 mb height anomalies. Also the notion life-
time seems to apply to a Lagrangian time scale. A La-
grangian time scale is always longer than an Eulerian
time scale. But our temporal spectral analysis, which
is essentially local in physical space, deals by definition
with Eulerian time scales. Also the time scales used in
the arguments by Lorenz (1969) and Lilly (1973) are
Eulerian. Especially in the high frequencies this dis-
tinction makes a difference. It may well be that when
comparing lifetime and prediction time an analysis in
a Lagrangian framework would imply that improve-
ments can still be made in the high frequencies (as-
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suming that the ratio should be order 1). However,
the Lagrangian versus Eulerian distinction probably
has little impact on the low frequencies and would not
alter the conclusion that skill is below its potential in
the low frequencies.

Perhaps for LRWP a new kind of NWP model is
needed that excludes the transient eddies altogether
(or gradually after 3 days) so as to allow the low fre-
quencies to evolve on their own. The studies by Mad-
den (1979) and Branstator (1987) clearly indicate that
certain energy-rich modes exist for a long time without
too much visible interference by the transients. Kushnir
and Wallace (1989) found that zonal waves 1-3.in a
general circulation model run were relatively insensitive
to the inclusion or exclusion of high frequency tran-
sients in the initial state. On the pessimistic side it has
been argued by many that nonlinear interaction be-
tween various scales of motion will limit predictability
in the low frequencies (or large scales) simply because
the high frequencies become unpredictable much
sooner. A very specific and quantified version of the
scale interaction problem is that “weather regimes”
constitute equilibrium states between the transient ed-
dies and larger scales (Reinhold 1987), and hence, the
lack of absolute accuracy in forecasts of transient eddies
is the roadblock in the way of successful LRWP. In
that case there would not be much hope, especially
because there has been no shred of evidence offered so
far in the literature that the collective effect of transient
eddies is of any prognostic use after they have, indi-
vidually, become unpredictable. Also, if we could have
afforded NWP models with resolution sufficient to re-
solve clouds in 1950 we might have concluded that
cyclones cannot be predicted over their entire life cycle
unless we have absolute precision in the cloud forecasts.
. By the same token we may have to use models that
target low-frequency events that are governed by their
own dynamics with at most a (minor?) hindering effect
of transient eddies. )

Other obvious candidates that could explain the lack
of skill in the low frequencies are (i) deficient inter-
action with the lower boundary, which is often thought
to provide the long time scales; (ii) incorrect propa-
gation of long waves into the stratosphere; (iii) an in-
correct time-mean state ( climate drift) relative to which
the low frequencies develop as slow instabilities; (iv)
inconsistent vertical /horizontal resolution; and (v)
uncertainty about orographic forcing which, certainly
in barotropic models, is a major source of low-fre-
quency variability. Also a simple accuracy argument
points at increasing difficulties in forecasting the low
frequencies. For an amplitude spectrum ¢(k) the time
derivative is k¢( k). So unless ¢( k) drops off faster than
k' [which is not the case except perhaps in very high
frequencies (Van den Dool 1975)] the time derivative
decreases with decreasing frequency thereby increasing
the demand for observational accuracy.
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Could it be that something is missing altogether in
current NWP models? Graham ( 1988) has shown that
NMC’s extended forecast can be improved by a statis-
tical scheme that takes into account a multitude of
observed states antecedent to the initial state: in essence
we must have some sense of what is going on in the
low frequencies. Maybe we need more than one snap-
shot of the atmosphere (the initial state) to initialize
the NWP model. Maybe the true equations are really
higher order in time so that more than one time level
of data from which to start the time integration can be
used. In the early days of NWP the synopticians were
sceptical because, by starting the integration from ¢ = 0
and ignoring the past, NWP showed complete disregard
for “historical development,” an issue considered to
be of great importance until 1950. Maybe the synop-
ticians were right after all.
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