JUNE 1993

HUANG AND vaAN DEN DOOL

Monthly Precipitation-Temperature Relations and Temperature Prediction

over the United States

JIN HUANG AND HUUG M. VAN DEN DOOL
Climate Analysis Center, National Meteorological Center, Washington D.C.

(Manuscript received 4 May 1992, in final form 22 September 1992)

ABSTRACT

The monthly mean precipitation-air temperature (MMP-MMAT ) relation over the United States has been
examined by analyzing the observed MMP and MMAT during the period of 1931-87. The authors’ main
purpose is to examine the possibility of using MMP as a second predictor in addition to the MMAT itself in
predicting the next month’s MMAT and to shed light on the physical relationship between MMP and MMAT.
Both station and climate division data are used.

It was found that the lagged MMP-MMAT correlation with MMP leading by a month is generally negative,
with the strongest negative correlation in summer and in the interior United States continent. Over large areas
of the interior United States in summer, predictions of MMAT based on either antecedent MMP alone or on
a combination of antecedent MMP and MMAT are better than a prediction scheme based on MMAT alone.
On the whole, even in the interior United States though, including MMP as a second predictor does not improve
the skill of MMAT forecasts on either dependent or independent data dramatically because the first predictor
(temperature persistence) has accounted for most of the MMP’s predictive variance. For a verification per-
formed separately for antecedent wet and dry months, much larger skill was found following wet than dry Julys
for both one- and two-predictor schemes. Upon further analysis, we attribute this to the differences in the climate
between the dependent (1931-60) and independent (1961-87) periods (the second being considerably colder
in August) rather than to a true wetness dependence in the predictability.

We found some evidence for the role of soil moisture in explaining negative MMP-MMAT and positive
MMAT-MMAT lagged correlations both from observed data and from output of multiyear runs with the
National Meteorological Center model. This suggests that we should use some direct measure of soil moisture
to improve MMAT forecasts instead of using the MMP as a proxy.
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1. Introduction

Forecasts of monthly mean air temperature (MMAT
or T) near the surface in the midlatitudes are nowadays
made using combined dynamical and statistical meth-
ods. With increased understanding of physical pro-
cesses and rapid development in computers, improve-
ments of numerical prediction models have led to a
greater emphasis on the dynamical part of the forecast.
However, because of the models’ internal instability
associated with mesoscale and synoptic-scale motions,
most of the skill of dynamical models comes from the
first ten days (Tracton et al. 1989). At longer lead times,
statistical and/or empirical methods become relatively
more important (Wagner 1989).

The purpose of this study is to examine the relation
between monthly mean precipitation (MMP or P) and
MMAT over the United States, both simultaneous and
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with lag and lead. Such efforts would aid in further
developing empirical tools for the monthly or longer-
range temperature forecasts over the United States.
Also they would document useful background material
to understand the physics of the relation between at-
mospheric circulation (which produces the precipita-
tion), surface hydrology, and surface air temperature.
These issues are pertinent to long-range forecasting
(Wagner 1989) as well as to climate change (e.g.,
Schlesinger 1989; Verstraete 1989). As far as forecast-
ing is concerned, in this paper we focus on examining
the possibility of using MMP as a predictor in MMAT
forecasts.

The physical rationale behind using precipitation to
forecast temperature is that precipitation affects soil
moisture which in turn affects current and future sur-
face temperature by controlling the partitioning be-
tween the sensible and latent heat fluxes. Further feed-
back may occur through changed cloudiness, heat
capacity, relative humidity, surface albedo, and rough-
ness. It is perhaps surprising that the correlation be-
tween current precipitation and future temperature has
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until recently not been studied as extensively as, for
instance, temperature persistence (Namias 1952;
Dickson 1967), which is widely used in empirical fore-
casting. The reason is, apparently, the almost complete
absence of any persistence in precipitation anomalies,
which makes it at first sight an unlikely predictor for
anything else. However, the soil integrates the incoming
precipitation, thus creating a parameter, the soil mois-
ture anomaly, which does have long time scales. A nu-
merical experiment using an idealized geography found
that positive soil moisture anomalies persisted for sev-
eral months owing to significantly enhanced precipi-
tation (Yeh 1989). Just how the soil integrates incom-
ing precipitation we do not know. Ideally we would
like to have the most recent (not time-averaged ) mea-
sured soil moisture data averaged over a suitable spatial
domain. Since such measurements are rare we will use
in this article the MMP anomaly as a first-order proxy
for the soil moisture anomaly. This will be the bench-
mark for later studies in which we either calculate soil
moisture using a physical model, or use streamflow
data in which nature has preformed a space-time in-
tegration.

The simultaneous correlations between MMAT and
MMP over the United States in the 12 calendar
months, which have been documented in an atlas in
Van den Dool (1988, hereafter referred to as D88),
will now be briefly summarized. There is generally a
negative correlation between MMAT and MMP in all
seasons and areas. The only clear exception is the area
of Tennessee, Kentucky, and Ohio where advection of
warm and moist air in winter leads to a positive cor-
relation. Positive correlations have also been reported
for western Europe in winter (Madden and Williams
1978). Clouds explain most of the negative correlation.
When it is cloudy it is cooler than normal and also
rainier than normal. Soil moisture would also explain
some of the negative correlation. There seem to be at
least three “regimes” in the 12 monthly mean maps
in D88: 1) a negative correlation (down to —0.8) in
the northern central states in winter months; 2) a pos-
itive correlation (up to +0.5) in the eastern third of
the nation in winter; and 3) negative correlations
(down to —0.8) in a broad band covering the area over
and just east of the Rocky Mountains in summer. In
our opinion, only the third regime is of a somewhat
local nature and in part related to the role of soil mois-
ture. Numerical experiments [see Mintz (1984) and
Yeh (1989) for a review] show that surface air tem-
perature and precipitation are sensitive to prescribed
soil moisture. The negative simultaneous correlation
between MMP and MMAT in summer is probably
further enhanced by a feedback between hydrology and
atmospheric circulation. Reduced evaporation from
dry soil (in itself a local effect) increases the surface
temperatures, which leads to strengthened upper-level
anticyclonic flow that will further decrease precipitation
and soil moisture. The relation between drought /heat-
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wave pattern and anticyclonic circulation anomalies
aloft has been the subject of many observational studies
(e.g., Reed 1933a, 1937; Klein 1952a,b; Namias 1955,
1960, 1982; Chang and Wallace 1987).

Sketchy studies on the lagged correlation between
MMP and MMAT can be traced back to some old
references (e.g., Reed 1933b; Namias 1960) and a set
of maps for the United States prepared by Crutcher
(1978). The temporal lagged correlation between
MMP and MMAT with MMP leading by one month
(hereafter referred to as P-T relation) has been cal-
culated and displayed for the United States in D88,
which is an update of the work by Crutcher. A strong
negative correlation (down to —0.6) is found in the
interior continent in the Texas/Oklahoma / Kansas re-
gion in summer, which indicates that a dry/wet July
in the interior continent tends to be followed by a
warm/ cold August. This relationship can be identified
as the prognostic version of the third regime for si-
multaneous correlation. The influence of current pre-
cipitation on future temperature has also been found
in other studies. Walsh et al. (1985) made a series of
objective specification experiments (Klein 1983; 1985)
with monthly 700-mb height and surface temperature.
They found that the errors in the specified temperature
have a significant relation to soil moisture. During
summer, the errors that can be attributed to soil mois-
ture are 0.3°-0.7°C, that is, the surface air temperature
is warmer than that anticipated from the large-scale
flow if the soil is dry. Karl (1986) calculated the rela-
tionship between temperature and soil moisture indi-
ces. His results indicate that the soil moisture may pro-
vide some skill in predicting monthly and seasonal
temperature during the spring and summer in the in-
terior of the United States continent. Van den Dool et
al. (1987) used an intuitive physical model to illustrate
how MMAT persistence may be enhanced by random
precipitation through accumulated soil moisture
anomalies. Chang and Wallace (1987) found that
droughts are usually followed by heat waves in summer
in the United States Great Plains. Similar effects of soil
moisture were also found in a study of the effects of
irrigation in the southern Great Plains (Barnston and
Schickedanz 1984). The irrigation appears to lower
the daily surface maximum temperature by ~1-2°C.
The negative P-T correlations (down to —0.4 in sum-
mer) are also obtained by Lyons (1990) who studied
monthly station data in Texas.

The P-T relationships found in the above studies
suggest that precipitation is important for temperature
on a local scale and in summer, not only in a diagnostic
mode, but also in a prognostic sense. However, the
existence of a lagged P-T correlation does not neces-
sarily mean that precipitation can profitably be used
as an additional predictor for future temperature.
Monthly mean precipitation’s predictive variance may
already have been accounted for by using temperature
persistence, because the simultaneous MMAT-MMP
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correlation is highly negative (down to —0.8; see maps
in D88).

Data analyses suggest that the influence of precipi-
tation on future temperature may be different in dry
months than in wet months (i.e., asymmetric relative
to the climate mean). For example, Van den Dool
(1989) found that the spatial scale of temperature
anomalies over the United States following dry months
in Oklahoma is much larger than that following wet
months. It is interesting to further examine here this
asymmetry in terms of the strength of the P-T relation.
Such asymmetry should be exploited when using pre-
cipitation to predict future temperature.

The purpose of this paper is:

1) To describe the seasonality, geographical distri-
bution, and strength of the relations between MMP
and MMAT with different leads and lags over the
United States. Those relations are shown by calculating
the lagged temporal and pattern correlation.

2) To examine whether use of MMP (MMAT) as
another predictor increases the forecast skill in MMAT
forecasts when previous MMAT (MMP) is used as the
initial sole predictor. This examination will be made
by comparing the resuits of a two-predictor ( MMAT
and MMP) regression model with a one-predictor (ei-
ther MMAT or MMP) model.

3) To investigate the possible asymmetry of the
lagged P-T and T-T relations with respect to dry versus
wet antecedent months.

4) To confirm/reject some of our speculation about
soil moisture, we also study the P-T relation with data
generated by multiyear runs of the National Meteo-
rological Center’s (NMC) Medium-Range Forecast
(MRF) Model with and without interactive soil mois-
ture feedback.

This study is primarily based on observed monthly
temperature and precipitation data for the 1931-87
period at both climate divisions and stations. The rea-
son we use both station and climate division data is
that, certainly with a lead time, the P-T correlations
are weak (0.5-0.6 at best). Hence, the results are sen-
sitive to sampling as well as to data problems. The
latter tends to be quite different for division than for
station data. The month-to-month temperature cor-
relation described in Van den Dool et al. (1986) is
quite different in many areas from that in Dickson
(1967). The reason is the spatial averaging used in the
temperature data employed by Dickson. Use of both
datasets serves as a mutual check on the credibility of
the results.

In this paper, we use monthly mean data. It is likely
that even if we fix the predictand to be the monthly
mean temperature, the optimal averaging (or back-
ward-looking weighted averaging) on precipitation

. would be quite different from the traditional monthly
mean. This depends also on whether the precipitation
data are station or division data.

HUANG AND VAN DEN

DOOL 1113

2. Data and methods
a. Data

Three sets of surface air temperature and precipi-
tation data are used. The first two are observed monthly
mean data at climate divisions and stations, respec-
tively. Two auxiliary global gridpoint datasets are de-
rived from two multiyear runs with the NMC MRF
model, one with and the other without soil moisture
feedback.

1) CLIMATE DIVISION MONTHLY MEAN DATA

The monthly mean data for the period 1931-1987
at 344 United States climate divisions were obtained
from the National Climatic Data Center (NCDC) of
the National Oceanic and Atmospheric Administra-
tion. Excluding 17 climate divisions with erroneous or
missing data, we actually analyzed the data over 327
climate divisions. The areal distributions of the climate
divisions are shown in a location map (Cayan et al.
1986). The number of stations within a division, as
well as their spatial distribution, has varied over the
1931-87 period. Such station changes may introduce
artificial variability into the data.

2) STATION MONTHLY MEAN DATA

Monthly mean temperature and precipitation at
stations are calculated from daily data at 138 cooper-
ative stations that are a subset of the Historical Cli-
matology Network (HCN) stations (Quinlan et al.
1987). The data were obtained from NCDC /National
Oceanic and Atmospheric Administration (NOAA)
and contain daily maximum and minimum temper-
ature and precipitation total at stations. The beginning
time of the data varies from station to station but most
starts before 1900. To compare with monthly climate
division data, we use the station data for the period of
1931-87.

The daily station data have various problems related
to missing data. The criterion for calculating monthly
mean data is the following. If the number of missing
days is less than 1/3 (of 28, 29, 30, or 31), the monthly
mean is calculated from days with data. If more than
1/3 of the days in a month is missing, the monthly
mean is “flagged” and is skipped in the analysis for
this station and this month. Therefore, the sample size
of the time series varies slightly from station to station
and from month to month.

3) OUTPUT FROM MULTIYEAR RUNS
WITH MRF MODEL

This model is a T40 version of the global spectral
MRF model at NMC in Washington D.C. The model
has 18 vertical levels. The model was integrated from
the initial conditions on 31 July 1990. The solar ra-
diation was updated every day according to the as-
tronomical calendar. All boundary conditions (sea ice,
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sea surface temperature, snow depth, and cover) were
updated every day according to their climatology, ex-
cept soil moisture. There are two runs of the MRF
model. The first is a ten-year integration with no in-
teractive changes in the boundary conditions. There-
fore, soil moisture anomalies did not exist and could
not be the cause of any P-T relations. The second is a
five-year integration with interactive soil moisture
feedback in the model. The output used for this study
is surface temperature and total rainfall, which are on
a regular 2.5° latitude X 2.5° longitude grid (Van den
Dool et al. 1991).

b. Analysis

1) MEAN, STANDARD DEVIATION,
AND STANDARDIZATION

In this paper, 7(s, m, j) stands for monthly mean
temperature at station or climate division s, month m,
and year j; P(s, m, j) stands for monthly total precip-
itation, where the station s ranges from 1 to 327 for
climate division data and 1 to 138 for station data, the
year j ranges from 1 to 57, and the month m from 1
to 12. The mean temperature over 57 years is

57

T(s, m) = 5i7 S T(s, m, j). 2.1)
j=1

The standard deviation of the temperature at station §
and month m is

SDT(s, m) = [57 > T*(s, m,j)— T*(s, m)]m"

j=1
(2.2)
Then the standardized temperature anomaly is
) N _T(s, m,j) — T(s, m)
T(s, m,j)= .
(s, m, J) SDT(s, m) (2.3)

_ Similar notations are used for precipitation, that is,
P(s, m), SDP(s, m), and P(s, m, j).

2) TEMPORAL CORRELATION
The temporal correlation (TC) between the

two standardized variables T and P can be defined as

57
TC(s,m, 7)== X P(s, m, ) T(s,m+7,)), (24)
j=1

where positive 7 means that precipitation leads tem-
perature by r months and negative 7 means temper-
ature leads precipitation by  months. When Pis re-
placing T, (2.4) represents the temporal correlation
between current temperature and future temperature.

3) PATTERN CORRELATION

A pattern correlation (PC) averaged over a range of
years between P and T is defined here as
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PC(m. 1) = 357575 2 Z Bs;m )

X T(s,m+7,j). (2.5)
Because 7 varies from 0 to 2 years in this analysis, the
averaged PC is based on (57 — 2) or 55 years of data.
The standardization is also based on 55 years, using
terms that are slightly different from (2.1) and (2.2).

¢. Multiple linear regression

The linear regression used is an ordinary regression
which can be found in any standard statistics book.
Only a short description is given here. Because we are
interested in predicting the temperature of the next
month based on temperature and/or precipitation of
the current month, a two-predictor regression is de-
scribed here. Regressions with more predictors are
similar. In this study, the two predictors are the current
temperature T and precipitation Py, and the predic-
tand is next month’s temperature 7. All the quantities
are standardized and the symbol ‘"’ is omitted below
for simplicity. The multiple linear regression relation
is the following:
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FIG. 1. Pattern correlation (%) over the United States at lags from
one to four months as a function of season. The data are for 1931-
87 at 327 climate divisions. The upper panel: MMAT autocorrelation,
that is, T-T correlation. Values less than 10% are not analyzed; the
interval is 5%; Lower panel: MMP-MMAT cross correlation, that
is, P-T correlation. Values greater than —5% are not analyzed. The
interval is 5%.
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T(s,m+1)

=a(s, m)To(S, m)+b(s7 m)P()(S, m)7 (2'6)
where T/(s, m + 1) is the forecast temperature in
month (m + 1) by linear regression at station s and
month m, while a(s, m) and b(s, m), determined from
least-squared methods, are regression coefficients,
which are functions of location s and month n. Note
that the predictors describe conditions only at the sta-
tion (or division) being forecast. Since the quantities
are anomalies, there is no constant term in (2.6).
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FIG. 2. Pattern correlation (%) over the United States at lag one
month as a function of the leading month. The data are for 1931-
87 at 327 climate divisions. The four curves are for 7-T (solid line),
T-P (dashed line), P-P (dot and dashed line), and P-T (dotted
line). (a) Observations; (b) output of the MRF model with fixed soil
moisture; (¢) output of the MRF model with interactive soil moisture
feedback.

d. Verification of regression forecasts

We use a so-called independent verification method.
In this method, we divide the time series of the data
into two parts. The first part is used to calculate the
regression coefficients and develop the prediction
model. The second part is used to verify the results of
the prediction. The data in the second part are stan-
dardized based on the mean and standard deviation of
the first part, just as would be possible in verifying a
real forecast in an operational setting. The verification
skill measure is either the temporal or the regional pat-
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FIG. 3. (a) Temporal correlation between July MMP with August MMAT over the United States at 327 climate divisions; the data are
for 1931-87. Correlations of 20% to 40% or —20% to —40% are lightly stippled and correlations larger than 40% or smaller than —40% are
heavily stippled. Solid lines are for positive correlation and dashed lines for negative correlation. (b) The data is the output of a ten-year
run of MRF model without soil moisture feedback. (c) The data is the output of a five-year run of MRF model with soil moisture feedback.
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FIG. 3. (Continued)

tern correlation between the predicted value and the
observed value. The temporal correlation is defined as

TC(s, m)

2
Z T'(s, m, )T (s, m, )

= J=h i
¥/ J2 >
[ 2 (T/(s, m, )’V 2 (T(s, m, j))?]'"?
J=n J=n

(2.7)

and the regional pattern correlation averaged over a
range of years is defined as

2 J2

z I (s, m,)T(s, m,))
=5 J=h

52 J2
[Z 2 (T/(s,m, )]

S=$81 j=j)

PC(m) =

. (2.7a)

XIS 3 (F(s, m, )PP

s=s1 j=h

Summing stations or climate divisions from s, to s, is
done to form regional pattern correlations; s = 1,327
is the whole country for climate divisions.

The dataset is divided as follows. The sample size
of the data for this study is 57 years, from 1931 to
1987. The last 27 years are used for verification, that

is, j; = 1961, j, = 1987. However, most of the last 27
years may also be used as part of the first (develop-
mental ) dataset. The size of the developmental dataset
depends on the year being verified, ending one year
earlier than the verification year. For example, to verify
the results at the 31st year, the first dataset spans from
year 1 to year 30. In verifying year 57, the data from
year 1 to year 56 are used to develop the regression
model. Notice that the observed and forecast anomalies
refer to departure from the mean over the develop-
mental dataset, that is, the forecast for 1961 is expressed
and verified relative to 1931-60, 1962 relative to 1931-
61, etc. That is the reason we used zero (that is, the
mean for the developmental period) as the means of
the two variables in Eqgs. (2.7) and (2.7a) for the ver-
ification. In this way, we faithfully mimic a possible
operational setting, thereby neither inflating nor de-
generating the estimates of skill (to the best of our
knowledge). We have to deal, however, with more
sampling fluctuation simply because the regression and
the verification are based on smaller samples. Also, the
“climate change factor” (1961-87 is different from
1931-60 in many ways) becomes enormously impor-
tant in understanding the verification results.

The forecasts will also be verified separately for an-
tecedent wet and dry months using (2.7) or (2.7a) ex-
cept summing over years only with antecedent wet or
dry months.
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FIG. 4. As in Fig. 3a for July MMAT-August MMAT correlations.

3. Results

We mainly show the results calculated at climate
divisions. However, the results at stations are also
mentioned for comparison when necessary.

a. Pattern and temporal correlations

Figure 1 shows the United States pattern correlation
as functions of lag (in months) and base month (de-
fined as the predictor’s month). The lag  between the
two variables ranges from one to four months. The
upper panel of Fig. 1 illustrates the 7-7 pattern cor-
relation at climate divisions. Contour lines for corre-
lations less than 0.1 are not plotted, because they are
not statistically significant at the 95% confidence level
(see Appendix ). Results shown in Fig. 1 indicate that
temperature persistence is largest in summer and win-
ter, and smaller in spring and fall. The 0.15 or greater
levels of temperature persistence extend to at least two
months only in summer. We calculated the pattern
correlations with lags up to 24 months (not shown).
At longer lags (7 = 3 months), we see an occasional
0.15 appear but without clear structure. Those results
are broadly similar to those obtained by Van den Dool
et al. (1986) (using station data) and our updated
analysis for station data (not shown). The only differ-
ence between station data and climate division data is
that there is a clearer summer-to-summer persistence

based on station data (also see Madden and Shea
1978), while this interannual temperature persistence
is smaller in the analysis based on climate division data.

The lower panel of Fig. 1 shows the P-T relation.
Absolute values of less than 0.05 are not analyzed (see
Appendix). It is found that the P~T correlation is gen-
erally negative and highest in summer (May-Oct.), but
the effects of MMP on MMAT exist for a shorter time
than temperature persistence on an all United States
basis. The P-T correlations with lags of more than one
month are very small.

Figure 2a shows the annual variation of one-month
lag pattern correlation based on climate division data.
The four curves are for 7-7, P-P, P-T, and
T-P, respectively. The results of the analyses based on
station data (not shown) are similar. The most signif-
icant feature is that a negative P-T correlation exists
in each month of the year except December, with the
maximum in summer. Both one-month lagged 7-P
and P-P correlations are generally very small, staying
within the limits (£0.04) set for statistical significance
in most months (see Appendix ). This suggests that, in
line with experience, the MMP prediction for next
month cannot be helped very much by either the
MMAT or the MMP of the current month. The one
exception is the November-December period when
MMP anomalies have a slight tendency to persist. It is
important to note that the P-T correlation is so much
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FIG. 5. Regression coefficients (a) a, and (b) b, in regression model Tavg = Ty + boPyy. The data are MMP and MMAT at 327 climate
divisions during the period 1931-87. The regression coefficients have been multiplied by a factor of 100.
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FIG. 6. Temporal correlation between actual August MMAT and the MMAT predicted by regular regression models with (a) July MMAT
as the predictor; (b) July MMP as the predictor; (c) both July MMAT and MMP as the predictors. Correlations of 20% to 40% or —20%
to —40% are lightly stippled and correlations larger than 40% or smaller than —40% are heavily stippled. Solid lines are for positive correlation
and dashed lines for negative correlation.
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higher than the 7-P correlation, which is an important
feature of the physics explaining the P-T relationship
through soil moisture anomalies.

Recently, multiyear integrations of the NMC’s MRF
model with and without soil moisture feedback made
by Van den Dool et al. (1991) lend further support for
this argument. In the model with fixed soil moisture
(later on referred to as model 1), there is no effect of
soil moisture anomalies on temperature. Nor can an-
tecedent precipitation have an impact on future tem-
perature through soil moisture anomalies. Figure 2b is
the same as Fig. 2a except for using the output of model
1. We use all summer months to increase the sample
size to 30. For example, the P-T correlation in July
here is calculated using June-July-August MMP and
July-August-September MMAT data. Here, 7-T cor-
relation less than 0.1 and P-T correlation less than
0.06 are not statistically significant (see Appendix). It
is found that the negative P-T correlation present in
the observation (Fig. 2a) does not exist in the output
of model 1. Moreover, the T-T correlation in summer
is smaller than in the observation.

In contrast, the model with interactive soil moisture
feedback (model 2) shows much more similarity to
observation than to model 1. Figure 2c is the same as
Figs. 2a and 2b, except for the output of model 2. As
it is a five-year integration, we use six months to keep

the same sample size as for model 1. It is found that
P-T correlation is negative everywhere and 7-T cor-
relation is highly positive in summer. The 7-P cor-
relation is negligible. The contrast between model 1
and model 2 and the qualitative similarity between
model 2 and the observations support the presumed
role of the soil moisture in the observed P-T correlation
and the role of the soil moisture in enhancing the tem-
perature persistence in summer.,

We now examine the geographical distribution of
the P-T temporal correlation. The P-T temporal cor-
relation for July/August at climate divisions is shown
in Fig. 3. Heavier stippling is used for correlations less
than —0.4 or greater than 0.4; lighter stippling is for
correlation of absolute value of 0.2 to 0.4. Lines for
correlations between 0.2 and —0.2 are not analyzed,
because with the sd =1/ VE, the correlations less than
0.22 are not statistically significant. Figure 3 is similar
to maps shown by D88, except no temporal smoothing
with nearby months is made for the maps shown here.
It is found that any positive correlation is absent in the
map; thus in general, a wet (dry) July is followed by a
cool (warm) August. The maximum center is in the
eastern portions of Oklahoma, Texas, and Kansas. The
geographical patterns of P-T correlation at stations (not
shown ) are similar to those at climate divisions. How-
ever, the magnitudes of the P-T correlation at stations
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TABLE 1. Averaged regional pattern correlation (X100) for the
independent verification period of 1961-87 over the United States
interior continent (latitude < 45°, 85° < longitude < 104°) between
the predictions and observations for July/August [see Eq. (2.7a) for
definition]. Each column is for different predictor(s). Each row is for
a different type of regression model or verification method.

MMP MMAT MMP and MMAT
Regular 249 37.2 38.2
Dry -5.9 23.0 17.1
Wet 51.1 52.2 58.0

are slightly smaller (by about 0.1) than those at climate
divisions. We attribute this to the beneficial impact of
spatially averaging the noisy precipitation data.

Local temporally lagged P-T correlations using the
output from model 1 and model 2 are shown in Figs.
3b and 3c, respectively. Only lines 0.3 and larger are
drawn, because for the sample size M = 30, correlations
less than 0.3 are not statistically significant. The prom-
inent negative correlation in the interior of the conti-
nent present in the observations is missing in model 1
(Fig. 3b). However, a clear bias toward negative P-T
correlation can be seen from the output of model 2
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(Fig. 3c). The model’s largest negative P-T correlation
does not collocate with the observation (i.e., centered
in Utah vs Oklahoma), also model 2 has stronger cor-
relation. While precision in the simulation is missing,
the comparison of model 2 versus model 1 does show
strong influence of soil moisture on the P-T correla-
tion.

The T-T correlation at climate divisions is also
shown in Fig. 4 for comparison. The general patterns
for station data are about the same (not shown), that
is, the temperature persistence in summer is large along
coastlines and in the interior continent. The analyses
with the MRF output (not shown) indicate that the
positive T-T correlations are much less widespread and
weaker in model 1 than in model 2.

b. Possible contribution of precipitation to
temperature forecasts

Figure 5 shows the spatial distributions of two-pre-
dictor regression coefficients a and b calculated for the
period of 1931-87. In most places, the MMAT forecast
for August through linear regression is carried by the
temperature term. However, in a large inland area of
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FIG. 7. Geographical map of the winner of the three regression schemes on the 1961-87 independent dataset.
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which the states Oklahoma /Kansas are the clearest ex-
amples, the MMP term appears to play some role.
Comparing the coefficients in the two-predictor model
with those in one-predictor models, that is, Fig. 5b to
3a and Fig. 5a to Fig. 4, one can see that in some areas
the two predictors describe the same variance. Figure
5b is similar to Fig. 3a except that the temperature
term has already accounted for the variance in Arkan-
sas and Missouri. Figure 5a is similar to Fig. 4 except
that low coefficient values appear over Oklahoma
where the precipitation also makes contributions. It
looks as though in many areas the P-7 and 7-T cor-
relations indicate the same underlying physics. We be-
lieve that soil moisture is the common element here.
Remember that in the observations the 7-P correlation
is negligible (see Fig. 2a), which suggests that the
P-T correlation is not due to another common slowly
varying process.

Figure 6 shows the local temporal correlation (TC)
between actual August MMAT and the predicted value
over 1961-87, where the predictor is July MMAT in
Fig. 6a, July MMP in Fig. 6b, and both July MMAT
and MMP in Fig. 6¢. The comparison between Fig. 6a
and Fig. 6¢ indicates that including MMP as a second
predictor in the regression model increases the skill of
MMAT forecasts only a little. The largest independent
contribution due to MMP is in the Oklahoma /Kansas/
Texas/Louisiana area, which agrees with Fig. 5. The
largest temperature persistence contribution not sup-
ported by the P-T correlation occurs in the northeast
region and along some coastlines (see Fig. 6). Table 1
(first row) lists the regionally averaged pattern corre-
lation [see Eq. (2.7a) for the definition] over the ver-
ified years (1961-87) between the predictions and the
observations. The averaged correlation increases from
0.37 to 0.38 due to inclusion of MMP as the second
predictor, and increases from 0.25 to 0.38 due to in-
clusion of MMAT when using MMP as the first pre-
dictor.

The comparison of Fig. 6b to 6a and 6c¢ shows that
MMP on its own is quite sufficient for MMAT forecasts
in some areas in the interior continent. In Fig. 7 we
summarize which of the three schemes (i.e., MMP as
the only predictor, MMAT as the only predictor, both
MMP and MMAT as the predictors) has the highest
skill. In the blank area, none of them has skill (by
some standard: TC < 0.2) to forecast August MMAT.
In the northern Texas/Oklahoma/Kansas area, the
scheme using MMP as the single predictor is the best.
In the east central area, Arkansas, Alabama, Tennessee,
and Kentucky, the two-predictor scheme is the best.

These results extend Karl’s (1986) finding that pre-
cipitation is a better predictor than temperature per-
sistence in spring and summer in the interior continent
in two aspects. First of all, our results are more location
specific. Second, our results are more quantitative. We
found that the differences between the above three
schemes are small, that is, inclusion of precipitation as
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a predictor does not improve the MMAT forecasts
dramatically.

It is interesting to notice that compared with the
temporal correlations (TC) for 1931-87 (Fig. 3a for
P-T and Fig. 4 for T-T'), the regions with large TC in
verification (see Fig. 6) are not completely congruent.
The primary reason is that the 7-T relation in the
most recent 27 years (1961-87) is different from that
in the full sample of 57 years. Figure 8a shows the
temporal P-T correlation for July/August over the
most recent 27 years (using 1961-87 means). The TC
in Oklahoma and Mississippi decreased from the full
sample to just 1961-87, while the TC in Texas, Ar-
kansas, Tennessee, Louisiana, and Alabama increased
relative to Fig. 3a. This conclusion is confirmed by the
same analysis based on station data. For the 7-T cor-
relation [see Fig. 8b], the temperature persistence has
decreased in the Oklahoma-Texas-Arkansas region
during the most recent 27 years. The region with large
T-T correlation (the heavier shading area) has shifted
eastward in the last 27 years. In spite of these shifts the
skill on independent data is positive in the areas dis-
cussed. This is because the sign of the correlation has
not been changed. Over North Dakota, where the
T-T correlation is low, the sign of the regression based
on 1931-60 led to forecasts that have a sign often op-
posite the verifying anomalies.

We also analyzed the other months in summer sea-
son. The skill for June/July and August/September is
slightly lower, which is consistent with lower P-T and
T-T correlations shown in Fig. 2a. The skill perfor-
mances of three schemes for those months (not shown)
also indicate the role of precipitation, but the role is
weaker and the spatial patterns are less organized, es-
pecially for the August/September case. This is prob-
ably due to the weaker effects of evaporation and soil
moisture on temperature in late summer and fall.

¢. Possible difference between wet and dry months?

In this section, we will determine the skill for the
wet and dry antecedent months separately. The purpose
is to anticipate the degree of success of a forecast (so-
called forecast of forecast skill). This work is further
motivated by the finding by Van den Dool (1989) of
the different future temperature anomalies after dry
and wet months.

Rows 2 and 3 in Table 1 show the averaged regional
pattern correlations between the regression forecast and
actual values for dry and wet antecedent months, re-
spectively. It is found that for any predictor(s), the
correlations in wet antecedent months are much larger
than those in dry months. For example, with July MMP
as a predictor, the correlation for the wet cases is 0.51
while the correlation for the dry cases is —0.06. The
temporal correlations between forecasts with MMP as
the predictor and actual values [see Eq. (2.7) for def-
inition] are shown in Fig. 9a (wet cases) and 9b (dry
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cases ). For the wet case, the maximum TC in the cen-
tral United States reaches 0.8, while TC for the dry
case is basically zero or highly negative.

Before jumping to the conclusion that the skill of
forecasts based on MMP, MMAT, or both is higher in
wet months than that in dry months, we should ex-
amine and understand where the enormous discrimi-
nation in the skill for wet and dry cases comes from.
We only show the results for MMP as the predictor,
although the case for MMAT as a single predictor has
also been examined with similar outcome. Since the
skill is verified using the data during the period of 1961~
87, we first determine if the P-T correlation during
this period is asymmetric for wet and dry antecedent
months. The correlation is calculated using an equation
similar to (2.7) except that the two variables (July
MMP and August MMAT) are normalized over 1961-
87 instead of 1931-87. The P-T correlation for the wet
case (Fig. 10a) is slightly larger than that for the dry
case (Fig. 10b) in the Alabama, Tennessee, and Texas
region and smaller in Oklahoma/Kansas. Overall,
however, the difference is too small to explain the large
difference in skill observed from Fig. 9. Thus, although
the distribution of MMP is nonnormal, this does not
cause a big difference in P-T correlation between dry
and wet cases.

If the data during the period of 1961-87 are nor-
malized based on the statistics of the previous period,
that is, 193160 for 1961 and 1931-86 for 1987, as in
the independent verification, the difference in the
P-T correlation between wet and dry cases becomes
much larger (see Figs. 10c and 10d). The P-T corre-
lation in wet antecedent months reaches —0.8, while
the P-T correlation for dry cases is close to zero in the
interior continent and is positive in the Great Lakes
area and Colorado region. Since we use the same
regression coeflicients in the prediction for wet and dry
cases, the asymmetry between wet and dry cases in the
P-T correlation during the period of 1961-87 and thus
in the verification skill must be caused by the climate
difference between 1961-87 and 1931-60.

Figure 11a shows the difference in July MMP be-
tween 1961-87 and 1931-60 and Fig. 11b represents
the August MMAT. It is found that the climate differ-
ence between these two periods in MMP occurred in
the east and central areas. The magnitude of the dif-
ference is up to 40 mm. The southern and eastern areas
such as Texas/Oklahoma/Louisiana/Arkansas/Mis-
sissippi and East Coast were drier during 1961-87,
while the northern region was wetter. Tennessee and
northern Alabama were also wetter during 1961-87.
For the MMAT, the period of 1961-87 was colder than
the period of 1931-87 over almost the entire United
States continent except in the west. The maximum dif-
ference was about 1°C.

In Fig. 12, we use schematic diagrams to show how
the cooling from 1931-60 to 1961-87 in August causes
the more negative P-T correlation in wet months and
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thus higher skill in forecasts in wet months. The x axis
is the July MMP anomaly and the y axis is the August
MMAT anomaly. The dots represent the data in dif-
ferent years. The solid dots in dry/warm and cold / wet
quadrants indicate hits in the sense that the regression
will always forecast in the dry/warm and wet/cold
quadrants. The open circles in the wet/cold and dry/
warm quadrants indicate misses. We have one fewer
dot in the wet/warm and dry/cold quadrants to keep
the total P-T correlation mildly negative. Figure 12a
shows the control case and Fig. 12b is the case with
temperature change only. If MMP and MMAT are
normalized based on the data in 1961-87 as in Fig.
12a, P-T correlations are the same for wet and dry
cases and the hit-miss ratio is 4:3, while the overall
hit-miss ratio is 8:6. When using the previous years’
temperatures to standardize, however, more cold years
appear because the previous period is warmer, which
is equivalent to moving the origin of 7 s,z up toward
the warm direction (see Fig. 12b). It is found that the
hit-miss ratio is 6:1 for the wet cases and 2:5 for the
dry cases. Thus the P-T correlation is highly negative
in wet cases and positive in dry cases. When using a
negative regression coefficient that is obtained from
the data in the previous period to make the forecasts,
it is expected that higher skill will be obtained in wet
cases and low or negative skill for the dry cases.

Figure 12c shows the case in which 1961-87 is colder
and drier than before and Fig. 12d is for the colder and
wetter case. These figures correspond to the situations
in the southern and northern United States, respec-
tively. In both cases we find that the wet cases benefit
more than the dry cases, in terms of proportions of
hits, from the climate change. Therefore, it is primarily
the cooling from 1931-60 to 1961-87 that causes the
more negative P-T correlation in wet antecedent
months and thus higher skill in verification.

4. Summary and discussions

The lagged monthly precipitation-temperature re-
lation (P-T relation ) has been examined by analyzing
the observed MMP and MMAT during the period of
1931-87 at 327 climate divisions and 130 stations, as
well as the gridded output of multiyear model runs
with and without interactive soil moisture. The main
purpose of this study is to examine the possibility of
using MMP as another predictor in addition to MMAT
in MMAT forecasts for the following month and to
better understand the physics of the relation between
soil hydrology and surface temperature.

Correlation and regression are used in the analysis.
The predictions of the regression model are verified by
a so-called independent verification in which we use
the dataset of the first period to make the prediction
and use the independent dataset in the second period
(1961-87) to verify the results.
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The lagged P-T correlation has been found to be
generally negative with a maximum in summer and in
the interior of the United States continent. The effects
of the current month MMP on future MMAT can last
almost 2-3 months. The magnitude of the P-T cor-
relations is smaller than that of 7-T correlations.

In order to determine whether including MMP can
improve MMAT forecasts, we have compared a two-
predictor regression model using both MMAT and
MMP as the predictors to one-predictor models with
MMAT or MMP as the only predictor. It has been
found that over large areas of the interior United States
in summer, predictions of MMAT based on either an-
tecedent MMP alone, or on a combination of ante-

cedent MMP and MMAT are better than a prediction
scheme based on MMAT alone. Nevertheless, the ver-
tfication indicates that including MMP as a second
predictor does not improve the MMAT forecasts dra-
matically. This may be because the MMP’s information
has been accounted for by using temperature persis-
tence, as the simultaneous MMAT-MMP correlation
is already strongly negative. Considering the difficulty
of measuring a meaningful soil moisture anomaly, it
may also mean that MMAT is as good a proxy for soil
moisture as MMP.

When verifying the regression results for wet and
dry months separately, we found that the MMAT fore-
cast skill is higher in wet months than in dry months.
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This is true for MMAT forecasts based on MMP and/
or MMAT. Further analysis indicated that the higher
skill for the wet months is due to the systematic cooling
from the period of 1931-60 to the period of 1961-87
over the entire United States continent. This result
suggests that the skill in independent verification has
been affected strongly by the climate difference between
the developmental dataset and verification dataset.

The negative P-T correlation is caused primarily by
short-term climate anomalies. When applying the
P-T regression on the independent data, the verifica-
tion correlation can be smaller/larger than expected.
For instance, if the climate became colder/wetter or
dryer/warmer, the MMP-based forecasts will score
better than expected. Therefore, we cannot be too con-
fident of forecasts of MMAT unless we also correctly
forecast (by other means) the interdecadal MMAT and
MMP changes.

The occurrence of a substantial climate change be-
tween two consecutive approximately 30-year periods
underscores the danger in an assumption of climatic
stationarity in a wide variety of studies. When this
assumption is unrealistically made, broad climate
changes can become disguised as other relationships,
potentially resulting in misleading conclusions.

In the introduction, we alluded to the role of soil
moisture in the lagged P-7 and 7-T relationships. We
here summarize the evidence consistent with this idea.

1) The observed P-T correlation, with MMP lead-
ing MMAT by a month, is much larger than the 7-P
correlation. This rules out the possibility that MMP
and MMAT are correlated only because each of them
is correlated to some common slowly varying cause.
The precipitation appears to be leading the tempera-
ture, and the correlations are negative.

2) When using data generated by a model with fixed
soil moisture, the lagged P-T correlation over the center
of the United States is entirely absent. Also the 7-T
correlation is generally lower, leaving a role for soil
moisture to enhance temperature persistence. In the
model with interactive soil moisture, the P-T corre-
lation is significantly negative and the T-T correlation
is highly positive in summer.

3) The negative P-T relation is present mostly in
the warmer months, when the potentially large latent
heat flux is subject to large change as a result of soil
moisture variation.
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APPENDIX
The Statistical Significance of a Pattern Correlation

Suppose the sample size is n = MN, where M = 55
is the number of years and N is the spatial degrees of
freedom. If the parent distribution of PC is (0, sd),
where sd = 1/Vn — 2, the sampled PC could be in a
range of 0 to ¢ 1/Vn — 2, where the ¢ value for a one-
sided ¢ test is 1.65 for the 95% confidence level. For
MMAT, N ranges from 8 (winter) to 15 (summer) and
for MMP, Nis 25 to 60 (see Van den Dool et al. 1986).
Thus using N = 8, a PC greater than 0.08 is significant
for the T-T relation and a PC greater than 0.04 is
statistically significant for the P-T relation (using
N = 30).

If M = 30 (as for the model output), the T-T cor-
relation smaller than 0.1 and P-T correlation smaller
than 0.06 are not statistically significant.
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