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ABSTRACT

A scheme to optimally weight the members of an ensemble of forecasts is discussed in the framework of
calculating an as accurate as possible ensemble average. Results show, relative to a single member, a considerably
improved 500-mb height forecast in the 6~10-day range for the Northern Hemisphere. The improvement is
nontrivial and cannot be explained from simple smoothing. This method is used in operations at the National

Meteorological Center.

1. Introduction

Since December 1992 the National Meteoro-
logical Center has been producing a set of five global
model runs out to 12 days ahead every day. Including
the multiple runs that were made yesterday and the
day before (see Fig. 1), we have, every day, an en-
semble of 14 members to aid in any operational
forecasts in the range from 1 to 10 days. In this note
we focus mostly on the 6-10-day (averaged)
range.

The 14 members of this ensemble can all be inter-
preted as starting from the same initial condition (IC),
t = 0, with small perturbations superimposed so as to
obtain 14 possible scenarios of future weather. The
perturbations are either the automatic result of starting
from time-lagged ICs (i.e., observations assimilated
between the initial time of this member’s integration
and ¢ = 0 cause the perturbation) or the result of adding
deliberately to the analysis at £ = 0 small perturbations,
which, in their spatial structure, are optimal in some
sense (Toth and Kalnay 1993). The configuration and
nomenclature (member 1 and so on) of the 14 runs
are represented schematically in Fig. 1, and for further
discussion of this particular setup, the reader is referred
to Tracton and Kalnay (1993).

As shown, for instance, in the results of the
DERF90 experiment (Van den Dool 1994), indi-
vidual model forecasts have on average some skill
out to about 15 days, but already in the 6-10-day
range skill is often quite small. It is for this reason
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that we need to change philosophy from single-run
quasi-deterministic thinking toward a probabilistic
approach that in all likelihood has to be based on
multiple runs.

The 14 members of this ensemble are not “equal,”
because 1) they have different age at the target ver-
ification time (due to the time-lagging aspect), 2)
they are produced at different resolutions (some at
T126 truncated to T62 at day 6; others T62 from
the beginning, and so on), and 3) some start from
presumably the best possible IC (the analysis) while
others start from a purposely perturbed IC. This in-
equality among the members leads us to ask how the
members should be weighted, a question that has
been formally addressed before (Dalcher et al.
1988).

This note is about the weights in constructing an
ensemble average 6—10-day forecast at NMC. [Work
on ensembles done elsewhere is described in Mureau
et al. (1993).] While the creation of an ensemble av-
erage leads to a lot of interesting questions (which are
the subject of this note), we point out that very likely
there are many more questions to be asked about the
use of ensembles, in particular as they relate to quan-
tifying uncertainty. Here we stick to the seemingly
simple task of making the best average.

In making an ensemble average it is very important
to understand the averaging method used, its short-
comings, and the peculiarities of verification scores
most commonly used to assess forecast accuracy/
skill—that is, root-mean-square (rms) error and
anomaly correlation (AC). Section 2 lists a number of
properties of methods and verification scores and other
considerations that are highly relevant to the issues of
ensemble averaging and improving scores in general.
In section 3 we present the particulars of the method
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FIG. 1. A layout of the 14 integrations that constitute the ensemble.

used here, a version of multiple linear regression. The
data are described in section 4 and the main results
are presented in section 5. The paper is concluded with
recommendations for application.

2. Considerations
a. About an ideal ensemble

An ideal ensemble may be thought of to consist of
an infinity of “equal” members, equal in the sense that
all members are plausible forecasts of the future. In
that case their weights are a priori known and there is
no need for any algorithm (always somewhat arbitrary)
to determine the weights that would have given the
best performance (by some arbitrary measure) over a
training dataset.

Under the above ideal scenario, taking an ensemble
average will remove all phenomena on which the
members disagree completely and retain those phe-
nomena that show up at the same time and place in
all forecasts. This is the most ideal spatial filter imag-
inable, as it depends on the flow itself, changes from
day to day, and does not depend on any a priori choices.
Sometimes a cyclone will be predictable at day 5,
sometimes it will not, and the ensemble-average “filter”
allows for such temporal variations in the amount of
filtering needed.

Obviously the ideal ensemble average has a reduced
anomaly magnitude that has important repercussions
for the rms error and AC. It is well known and fairly

obvious that damping a forecast toward climatology
reduces the rms error but up to a point only. But since
the amount of damping (and its spectral distribution)
is different every day, the averaging operator acting on
an ideal ensemble is much more sophisticated than
trivial overall damping, truncation, or other predeter-
mined smoothing. To understand the impact of en-
semble averaging on the AC, we here define

Y A'F cov(4, F)

AC= S TASSFA) 2 sdA)sd(F)’

(1)

where 4 and F stand for “analysis” and ““forecast,”
respectively, the summation is over time (t) and space
(s), and the ' denotes a departure from climatology.
An ideal ensemble average will leave the covariance
unchanged, but the AC will increase nevertheless be-
cause sd(F) decreases (relative to a single member).
It is important to note that the observations are not
touched by averaging some forecasts.
Below we discuss the real-world situation.

b. Formal procedures

There are formal procedures to minimize the rms
error of a set of given forecasts, the procedure usually
being based on linear regression, such as below in sec-
tion 3. However, there is no formal procedure to max-
imize an (linear) AC, although users would also like
to see a higher AC, aware as they are that part of the
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reduction in rms error may be due to simple damping.
The AC has become a widely accepted verification tool,
but fundamentally, the meaning of an anomaly (or
any) correlation is that the rms error of a set of raw
forecasts could have been minimized if we had mul-
tiplied the (standardized) forecast anomalies by AC.

¢. Ad hoc methods to increase AC

There are ad hoc methods to increase the AC, which
at the same time are interesting diagnostics as to what
part of the flow is best predicted /most predictable. Van
den Dool and Saha (1990) defined an AC as a function
of total or zonal wavenumber; that is, in (1) we sum
(s) only over a certain set of wavenumbers. It is easy
to see from their Figs. 2a,b that by truncating the fore-
cast and/or analysis anomalies, so as to retain only
the larger waves, the AC will go up. In this case both
sd(F) and sd(A) go down, while the cov(4, F) goes
down only very slightly. Retaining projections of fore-
casts/analysis onto leading empirical orthogonal func-
tions (Branstator et al. 1993) falls in the same category.
As explained before, the ensemble average is a (flow
dependent) operator to retain the most predictable ele-
ments and therefore is almost certain to increase the
AC by lowering sd( F). Once more—taking an ensem-
ble average does not change the verifying analyses, that
is, does not lower sd(A4). In both Branstator et al.
(1993) and Van den Dool and Saha (1990), the ver-
ification fields are filtered as well [lowering sd(A4)].
We believe that users of forecasts are not necessarily
helped by filtering analyses or observations.

d. What was done until now?

Until now the forecaster, based on his experience
and the recent track record of various models, assigned
weights to today’s and yesterday’s single-membered 6~
10-day forecasts made by 1) the National Meteorolog-
ical Center (NMC) and 2) the European Centre for
Medium-Range Weather Forecasts, and constructed a
“blend” out of it. (Note that single weights are applied
to entire Northern Hemisphere maps. There are no
space-dependent weights.) This is similar to an ad hoc
ensemble average over at least 3 members. The more
recent forecasts are usually weighed more heavily. More
“members” are sometimes thrown in the blender by
adding recently observed flows, persistence of the day
1-5 averaged forecast, conservative extension of the
MRFs day 5 forecast out to day 10 using the model
described in Van den Dool (1991), and so on.

e. Why do we want an ensemble average?

Taking an average is the simplest thing to do when
having too many maps to look at. Also, the average
could in some sense be considered the quasi-determin-
istic large-scale and low-frequency part of the forecast,
and it fits in the long tradition of having just a single
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(or very few) forecasts at one’s disposal. An average is
also needed to calculate the spread of the members;
that is, uncertainty is relative to some mean. Finally,
the ensemble average is, under certain conditions, a
probabilistic forecast expressed in a simple form. As
long as probability forecasts are as simple as shifts of
the unconditional probability distribution toward
above or below the climatological mean, the specifi-
cation of just the mean is in fact sufficient and complete
probability information. Under less simple conditions,
if the atmosphere were to bifurcate into a small number
of discrete states, the ensemble average would be com-
pletely misleading probability information.

3. The method

Given daily a set of N 6-10-day average forecasts
F;, i = 1, N, available over a period of M days with
associated 5-day mean verification (i.e., analyses A4)
available as well, we here ask the question of how to
construct an ensemble average. We approach this, ar-
bitrarily perhaps, through linear regression that will
give weights such that the ensemble average has the
smallest rms error over a training dataset. Assuming
that the observed climatology has already been re-
moved from all forecasts and analyses, we can define
the ensemble average FE by

N
FE(s,tY=ap + >, a;Fi(s, 1),

c=1

(2)

where, as before, s is space (either a gridpoint index,
or a spectral index) and ¢ is time running from 1 to
M. [There is no explicit reference to forecast lead time
in (2). All forecasts F; are 5-day averages valid at the
same target time, 6-10 (8-12) days ahead for the
youngest (oldest) forecast.] The N + 1 weights are to
be determined from minimizing the residual Q given
by

Q=73 Z[FE(s, 1) — A(s, 1) (3)

Differentiation with respect to N + 1 a,’s leads to the

following equations:
ao + Z aiF,- = /i (43.)

aF; + 3 a,F,F; = AF;, (4b)

where the overbar stands for averaging over ¢ and s.
Using the first equation to eliminate aq, the set of 14
in (4b) can be written in matrix form as

a A*FT
(FFFH ] = ),
ay, A*F?\;

where the symbol * denotes a departure from the space—
time mean. Equations (5) and (4a) can be solved by

(3)
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standard means. The weights a; are not a function of
space at this point. The sum of the weights is not re-
quired to be unity.

On the training dataset the ensemble average ac-
cording to (2) will have the lowest possible rms error.
To judge improvement, we will also carry results for
(i) individual forecasts, the latest high-resolution run
(member 1) in particular; (ii) the straight arithmetic
average over the 14 members; and (iii) a weighting
scheme where the weights a; are taken to be propor-
tional to the expected anomaly correlation of the ith
member. [ The latter would be the result of setting all
off-diagonal elements in the matrix in (5) equal to
zero——that is, neglect all correlation between forecasts. ]

4. Description of data

Our calculations are based on the ensembles of 14
member 6-10-day averaged 500-mb forecasts for the
larger part of the Northern Hemisphere (20°-80°N)
for the winter period: 14 December 1992 through 14
March 1993. So we had 87 cases (four forecasts were
lost).

5. Results and discussion

Table 1 shows a correlation matrix for winter 1992/
93. The correlation is not used explicitly in (5) but is
informative and can be obtained from the covariances
in (5) by dividing through by the appropriate standard
deviations. Obviously, the diagonal becomes unity. The
right-hand side column represents very nearly the usual
AC:s for each of the participating forecasts. With ref-
erence to Fig. 1, one can see that the AC generally
decreases with age of the forecast, from 0.56 for the
high-resolution most recent forecast to 0.40 for the
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oldest lower-resolution forecast. The (symmetric) 14
X 14 matrix on the left-hand side in Table 1 represents
the correlation among the forecasts. It is worth re-
minding ourselves that we are not dealing with a perfect
model, as is evident for instance from the fact that
forecasts correlate higher with each other than with the
verification. As it turns out the condition code of the
matrix is very good, so that numerical problems are
small and an inversion gives reliable a,’s. One reason
for this is that forecasts do not correlate too highly with
each other in the 6-10-day range as they would say at
day 1.

Table 2 shows the weights a; for winter 1992/93.
The weights in Table 2 should not be taken too literally.
For this sample size we estimate the uncertainty to be
at least 0.05. The conclusions are as follows:

1) Forecasts older than 24 h (members 6-14) con-
tribute little to the ensemble average. The ensemble
size is nominally 14 but really more like 5 or even 4
as far as obtaining an ensemble average is concerned.
This statement remains true even if the order 0.05
weights for the older members turn out to be statisti-
cally significantly different from zero on a larger dataset.

2) Four forecasts contribute almost equally, that is,
the latest high-resolution run, the plus and minus per-
turbation T62 runs, and the 12-h-old T62 “aviation™
run (member 5).

3) The =+ perturbations (Toth and Kalnay 1993)
are a helpful new element, carrying half the weight of
the ensemble mean.

4) The bias error is about —20 gpm, which leads to
a0 = 13.6 (a0 is smaller than 20 because the ensemble
average has a reduced anomaly amplitude).

5) The T62 control forecast appears redundant
(very low weight) in the context of having other fore-

TABLE 1. The anomaly correlation among the forecasts (14 X 14 matrix) and the anomaly correlation of each of the members with
observed (column vector, size 14). All refer to 500-mb height 20°-80°N, averaged over days 6-10 for winter 1992/93. The numbering of
the members (1-14) is as in Fig. I, while the abbreviated decriptors HR, ¢, +, —, and A4 refer to high-resolution, control, positive and negative

perturbation, and aviation run, respectively.

HR c + - A HR c + - A HR c + - OBS

1 1.00 0.76 0.70 0.71 0.76 0.67 0.62 0.59 0.59 0.60 0.56 0.52 0.49 0.52 0.56
2 0.76 1.00 0.83 0.84 0.69 0.65 0.71 0.66 0.65 0.59 0.54 0.58 0.55 0.56 0.56
3 0.70 0.83 1.00 0.70 0.64 0.62 0.68 0.70 0.60 0.56 0.53 0.56 0.56 0.54 0.54
4 0.71 0.84 0.70 1.00 0.67 0.63 0.66 0.60 0.67 0.58 0.53 0.57 0.51 0.55 0.55
5 0.76 0.69 0.64 0.67 1.00 0.74 0.64 0.60 0.61 0.67 0.58 0.54 0.49 0.52 0.54
6 0.67 0.65 0.62 0.63 0.74 1.00 0.69 0.63 0.65 0.70 0.62 0.56 0.52 0.53 0.47
7 0.62 0.71 0.68 0.66 0.64 0.69 1.00 0.77 0.79 0.62 0.59 0.66 0.60 0.60 0.47
8 0.59 0.66 0.70 0.60 0.60 0.63 0.77 1.00 0.64 0.57 0.56 0.62 0.65 0.55 0.46
9 0.59 0.65 0.60 0.67 0.61 0.65 0.79 0.64 1.00 0.60 0.58 0.60 0.53 0.61 0.47
10 0.60 0.59 0.56 0.58 0.67 0.70 0.62 0.57 0.60 1.00 0.69 0.59 0.54 0.55 0.46
11 0.56 0.54 0.53 0.53 0.58 0.62 0.59 0.56 0.58 0.69 1.00 0.63 0.57 0.58 0.39
12 0.52 0.58 0.56 0.57 0.54 0.56 0.66 0.62 0.60 0.59 0.63 1.00 0.71 0.74 0.40
13 0.49 0.55 0.56 0.51 0.49 0.52 0.60 0.65 0.53 0.54 0.57 0.71 1.00 0.58 0.38
14 0.52 0.56 0.54 0.55 0.52 0.53 0.60 0.55 0.61 0.55 0.58 0.74 0.58 1.00 0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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TABLE 2. Optimal weights for members 1-14.

1 2 3 4 5 6 7

9 10 11 12 13 14 a0

0.15 0.03 0.16 0.14 0.15 —0.05 -0.03

0.04

0.07 0.08 —0.04 —0.03 0.04 0.05 13.6

casts available. One reason could be that the control
run has nothing to add to what has already been con-
tributed by the average of the + and — perturbation
runs. By current construction (Toth and Kalnay 1993)
the average of + and — equals the control at ¢ = 0, and
for as long as a linear assumption remains valid there
is redundancy. We checked this explanation by rerun-
ning a 3 X 3 matrix problem involving only members
2, 3, and 4. In that setting the weights are 0.14(c),
0.25(+), and 0.25(—). Thus, the explanation is partly
true and it would therefore be more effective to change
the setup such that the + and — are not exactly sym-
metric relative to the control. The further lowering of
the weight to near zero (for T62 control) when 14
members are admitted points to additional redundan-
cies of the T62 control relative to other forecasts or
linear combinations thereof.

The weights have only a vague similarity to the ACs
(rhs in Table 1). In other words, the weights are not
typically proportional to the AC and do not decrease
with age like the ACs on the right-hand side of Table
1. This, of course, is the whole idea of optimal aver-
aging, which takes advantage of the correlations among
the forecasts, or, alternatively, of the partial correlations
hidden underneath the matrix in Table 1.

We reran the problem with only members 1, 3, 4,
and S and found very similar weights: that is, assuming
zero weight for 10 members did not change materially
the relative weighting of the 4 most important forecasts.

Note in Table 2 that the sum of the absolute weights
is slightly above unity (1.06). Therefore, there is no
explicit mathematically imposed damping. Any re-
duction in anomaly amplitude is the result of applying
the ensemble averaging procedure and in doing so fil-
tering the less predictable scales, as it should.

Table 3 shows the scores. By taking a straight average
over the 14 members there is already a noticeable im-
provement over the latest high-resolution run, both by
rms (98-87 gpm) and AC (0.560-0.589) standards. A
similar substantial improvement can be obtained by
the optimal averaging (rms down to 79 and AC up to
0.623). In between but close to the arithmetic mean
is an averaging procedure where the weights were pro-
portional to the anticipated AC (constant over the
whole period). Clearly, knowing the correlation among
the forecasts is very helpful. In all we seem to have
improved the forecast by about six AC points and the
rms is down from 98 to 79 gpm.

The last column of Table 3 shows the anomaly mag-
nitude (defined as the square root of the space mean—

squared anomalies) of the forecasts. Clearly, the opti-
mally averaged forecast has a small anomaly amplitude
(69), both compared to member 1 (101) and the arith-
metic mean ensemble average (85). The optimal av-
erage removes the least predictable parts of the flow
more effectively and completely than any other aver-
ages.

When we added as a 15th member the day 1-5 av-
eraged forecast averaged over members 1, 3, 4, and 5,
the rms and AC improved further to 78 and 0.640,
respectively (see Table 3, entry denoted “Optimal 157).
Table 4 shows the weights for this case. Some conser-
vatism helps—member 15 has the highest weight.

We made one attempt to derive the regression as a
function of total wavenumber. In (2) the weights q;
do not depend on location or spectral scale. A practical
disadvantage of regression by wavenumber is that
sampling uncertainty would be a bigger problem. The
weights are shown in Table 5 when derived for three
separate total wavenumber bands. For each band we
find weights broadly similar to those for all waves to-
gether. Therefore, there is no great need to make the
regression wavenumber dependent. This result appears
at first sight different from Dalcher et al. (1988). In
their case, forecasts were available only at daily intervals
(we have 5 per 24-h interval ), so their ensemble average
was primarily the most recent forecast, with older fore-
casts coming in with very small weights only. On a set
of M single forecasts, a regression acts as an overall
damping of anomaly magnitude so as to minimize the
rms error. When offered a regression as a function of
total wavenumber, the damping will be scale dependent
(Dalcher et al.’s case). This is already somewhat ac-
complished in our case by averaging four forecasts with
nearly equal weight. From an rms error minimization
standpoint, the best damping is achieved when the am-

TABLE 3. Root-mean-square error and AC for different strategies.

Anomaly

Root-mean-square AC magnitude
Latest run 98 0.560 101
Average 14 87 0.589 85
AC-avg 14 86 0.596 86
Optimal 14 79 0.623 : 69
Optimal 15 78 0.640 71
Poor man 84 0.570 70

Days entered

individually 78 0.642 69
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TABLE 4. Optimal weights with member 15 added.
| 2 3 4 5 6 7 8 9 10 1 12 13 14 15 a0
0.13 004 0.3 013 013 —005 —002 003 007 007 —004 —003 003 005 0.18 140

plitude for each wave is reduced by a factor propor-
tional to the AC for that wave.

Another way of discussing the issue of damping the
forecast is therefore by showing the spectrum of the
latest MRF run in comparison to that of the optimally
averaged ensemble. We shall look upon the latter as a
filtered version of the first. Figure 2 shows the amount
of damping that results, on average, from taking an
ensemble average—more precisely, the ratio of the
anomaly amplitude after filtering to that before, as a
function of wavenumber. Consistent with Table 3,
overall the amplitudes are reduced to about 70%. A
good deal of scale-dependent damping is accomplished
with essentially 4 members, the lower (higher) wave-
number being reduced to 80% (60% ). We suspect that
somewhat stronger scale dependence is required such
that the curves in Fig. 2 resemble more closely the AC
as a function of n and m, as shown, for example, in
Van den Dool and Saha (1990, Fig. 2). We hope to
accomplish this in the near future by larger ensemble
sizes (about 40 members instead of 14 have been im-
plemented in early 1994).

_ A poor man could approximate the filtering effect
of the ensemble average by applying the average
damping presented above every day to the latest MRF
run. We did this as a test to make sure the improve-
ments in scores reported earlier cannot be obtained in
a trivial way. Numbers under the entry in Table 3 la-
beled ““poor man” indicate that, indeed, the optimally
weighted ensemble average (labeled optimal 14) is
much better than the poor man’s proxy. Apparently,

plain and constant (in time) damping explains little
or nothing of the gains reported before. Mostly, the
poor man misses out on very substantial time variations
in the amount and spectral distribution of the damping
to be applied, while having an ensemble is a means to
anticipate the dispersion among the ensemble mem-
bers. High (low) dispersion corresponds to strong
(weak) filtering.

As can be seen from the value of @0 in Table 2, the
forecasts suffer from a cold bias. The ensemble average
forecast corrects for this bias, although only in a spatial
mean sense. Operationally at NMC forecasts are post-
processed and a space-dependent correction is applied
based on the mean forecast error in the last two months
(Alpert and Saha 1989). In the future operational
setup, it would be best to first postprocess each forecast
F; separately in this manner before regression (2) is
applied.

So far we have used 6-10-day time-averaged fore-
casts to create an ensemble average that matches 6-
10-day averaged analyses as closely as possible. One
could question the wisdom of time averaging both on
the predictand and predictor side. (In some sense time
averaging forecasts is a poor man’s ensemble average.)
As an additional experiment we entered forecasts for
days 6, 7, 8, 9, and 10 individually to predict the 6-
10-day average. Using all 14 members, this leads to a
70 X 70 matrix in (5), which we solved. We found,
however, that we can retain the essence of this exercise
by using the first 5 members only, thus solving a 25
X 25 matrix. The remaining 8 members contribute

TABLE 5. Optimal weights for various total wavenumber bands.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 a0
All waves
0.15 0.03 0.16 0.14 0.15 ~-0.05 -0.03 0.04 0.07 0.08 -0.04 —0.03 0.04 0.05 13.6
waves 0-6
0.16 0.02 0.17 0.22 0.18 -0.11 -0.04 0.02 0.10 0.10 -0.08 —-0.06 0.04 0.07 15.0
waves 7-12
0.16 0.06 0.11 0.10 0.16 -0.12 0.02 0.03 0.04 0.07 —-0.01 0.01 0.03 0.04 —0.8
waves 13-30
0.08 0.05 0.06 0.05 0.09 0.01 0.02 0.02 0.03 0.05 0.00 0.03 0.01 0.03 -0.8
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little, neither when entered as individual days nor, as
shown before, when entered as 5-day averages.

Table 6 shows the weights for this experiment. Es-
timating 25 weights (rather than 14 as before) intro-
duces a more sample-specific result. We also note that
earlier attempts to estimate the weights of individual
days using a single member (member 1) encountered
some difficulty in terms of obtaining numerically stable
weights. The matrix used here had a favorable condi-
tion code. The results are largely consistent with those
discussed before in terms of the relative weights of 6-
10-day averaged members 1 to S—that is, the control
T62 forecast contributes little. However, we also note
that in general day 6 contributes most, with days 7, 8§,
9, and 10 coming in with much less weight. Recalling
how much the D + 3 (member 15) contributed (see
Table 3 and 4), this reconfirms and extends an earlier
finding by Saha and Van den Dool (1988) that at some
point into the forecast a continued integration yields
little or no new information. The verification of fore-
casts based on individual days and members 1-5 only
is shown at the bottom in Table 3. Gains from using
individual days as predictors are negligible, even on
dependent data. Therefore, use of time-averaged pre-
dictors is justifiable and saves time.

6. Conclusions and recommendation

We believe we have demonstrated that an optimal
ensemble average is considerably better than a single
forecast for the average of day 6-10. Scores in terms
of rms and AC for Northern Hemisphere 500-mb
height are substantially better when an ensemble av-
erage is used. This gain is nontrivial and cannot be
reproduced from “‘just” the overall or scale-dependent

Damping due to ensemble averaging
winter 1992/93, Z500
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FIG. 2. The ratio of the amplitude of anomalies in the optimally
weighted ensemble mean to those in the latest single high-resolution
run, as a function of zonal (dashed line) and total (solid line) wave-
number. The damping represents an average over the whole dataset
of winter 1992/93.
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TABLE 6. Weights for individual days of members [-5.
Member /Day 1 2 3 4 5 Sum
6 0.14 0.01 009 0.08 003 035
7 0.03 -0.01 0.02 0.01 003 0.08
8 0.03 0.01 0.06 0.04 003 0.17
9 —0.02 0.02 0.03 0.03 0.02 0.08
10 0.02 -—-001 -001 0.03 004 0.07
Sum 0.20 0.02 0.19 0.19 0.15 0.75

damping effect associated with taking an ensemble av-
erage. The real gain of having an ensemble is associated
with day-to-day variation in the amount of dispersion
among the members of the ensemble, which implies
day-to-day variation in the amount and spectral dis-
tribution of the damping associated with taking the
mean.

As far as accuracy of the ensemble mean is con-
cerned, only the recent members contribute substan-
tially. These are the latest high-resolution run (member
1), the £ perturbed 0000 UTC run, and the 12-h older
aviation run (member 5). The T62 control run con-
tributes little or nothing to the ensemble mean.

The fact that only 4 members contribute significantly
to the accuracy of the ensemble mean should not be
construed to mean that the size of the ensemble need
not be larger than 4. The conclusion applies only to
this particular setup, which is a compromise between
having as many members as possible from the most
recent initial time and the practicalities of runs in real
time with deadlines for operational usage. It is no ac-
cident that the older members appear to contribute
little. We speculate that more forecasts (if properly
perturbed) from the most recent initial time(s), as
planned to be implemented as of February 1994, would
help. Also we here discuss only the accuracy of the
mean, and our conclusion may not carry over simply
to usage of ensembles in general. Research by Tracton
appears to indicate that probability forecasts do benefit
from the older members in the ensemble.

For operational application the following is reason-
able. Weights will be based on the last two months and
will be updated once a week. Two months is a com-
promise between changing seasons and the need for a
long sample to arrive at reliable weights. This appli-
cation has already found its way into various NMC
products since mid-1993, most notably into the official
6-10-day averaged 500-mb height anomaly map.

Preliminary tests of the above for spring 1993 show
that most of the gain in skill survives the test on in-
dependent data. Basically, this is because we estimate
only about four coefficients from a very large dataset
(60 time levels, Northern Hemisphere area).

If possible, the forecasts should be bias corrected be-
fore they enter (4a)—(5). We can further include the
ECMWEF forecast, or any in-house forecasts such as
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the anomaly vorticity advection model, so as to guide
the 6-10-day forecaster objectively.

The + perturbations in the T62 model were designed
to achieve maximal divergence between the control and
perturbed runs. Have we succeeded in this? Returning
to Table 1, the correlation among the four 0000 UTC
runs is given in the upper left. It appears that the T62
control diverges less from the + (or —) runs than it
does from any other forecast. Indeed the 0.83 and 0.84
correlations are by far the highest in the whole matrix.
This has to be studied more, keeping in mind that both
the structure of the + perturbation and their initial
magnitude may explain the high correlations.

The method, as is, can be applied to any parameter,
any lead time, and any level. We anticipate weights
somewhat like Table 2 but not necessarily very close.
At NMC the operational 6~10-day forecast is naturally
focused on an area smaller than 20°-80°N (all lon-
gitudes) for which we did the calculations. It is worth-
while to investigate the method on a smaller domain,
although the user better be aware of the reduction in
sample size. Also there is no obvious a priori reason
why the weight should depend on the area (other than
for sampling reasons).

In addition to the good contributions from the
members that are perturbed by the modes described
in Toth and Kalnay (1994), we are pleasantly surprised
by the performance of member 5, the so-called aviation
run. This integration (member 5) starts from 1200
UTC 12 h earlier, and yet contributes to the ensemble
average on par with three integrations from 0000 UTC.

One can see in Table 1 that the aviation run on its own
scores as highly as the 0000 UTC runs. Apparently,
the 1200 UTC initial condition contains information
that cannot be accounted for by perturbing the 0000
UTC initial condition. We can only speculate why this
is: the daily cycle? The availability of data? One must
keep this in mind also when comparing forecasts from
0000 UTC (many at NMC) to those from 1200 UTC
(the 10-day EC forecasts).

Given a 14-member ensemble, we determined 14
weights. There is no a priori reason why the positively
and negatively perturbed members should have differ-
ent weights. As shown in Tables 2, 3, and 5, the weights
for members (3, 4), (8, 9), and (13, 14) were indeed
very close, and we declare their difference a matter of
sampling. To further suppress sampling error, one
could rewrite the problem, assuming upfront a; = a4
etc., which reduces the matrix to 11 X 11. We may do
this in the practical application in the future, after we
settle on a configuration that will be used for a long
time.

For further demonstration, we applied the method
to the individual daily 500-mb height forecasts from
day 1 to 10. The results were provided by J.-F. Pan.
Figure 3 shows on the left a comparison of the AC for
member 1 (full) and the optimal average (dashed) for
leads of 1-10 days, for the period 1 February 1993-15
March 1994. This graph is a powerful demonstration
of the improvement of the scores because using ensem-
ble averages amounts to a gain of about half a day at
the 0.6 AC level, a gain normally associated with years
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of hard work on model improvements, increased res-
olution, or new observational platforms. The right
portion of Fig. 3 shows the same but with weights de-
termined from the verifiable forecasts in December and
January. The results appear thus quite satisfactory on
independent data. Early on in the forecast (at day 1)
the correlation among the members’ 500-mb height
forecasts is extremely high (0.99), thus making the en-
semble approach not only less relevant but also math-
ematically difficult. A stable solution for the weights
at short forecast leads was obtained by applying a
modest amount of “ridging” as described in Meissner
(1978). Clearly, the beneficial effects of optimal en-
semble averaging (relative to using the most recent
high-resolution run) do not show until the correlation
of the members with each other has decreased to 0.75
or so. For heights this is at about day 5.

Although the results so far are encouraging for 500-
mb height forecasts it should be pointed out that, as
of now, no hard evidence has been presented that the
forecast of surface weather elements has improved. This
will be studied further at NMC.
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