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Why Do Forecasts for “Near Normal” Often Fail?
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ABSTRACT

It has been observed by many that skill of categorical forecasts, when decomposed into the contributions
from each category separately, tends to be low, if not absent or negative, in the “near normal” (N) category.
We have witnessed many discussions as to why it is so difficult to forecast near normal weather, without a
satisfactory explanation ever having reached the literature. Afier presenting some fresh examples, we try to
explain this remarkable fact from a number of statistical considerations and from the various definitions of
skill. This involves definitions of rms error and skill that are specific for a given anomaly amplitude. There is
low skill in the N-class of a 3-category forecast system because a) our forecast methods tend to have an rms
error that depends little on forecast amplitude, while the width of the categories for predictands with a near
Gaussian distribution is very narrow near the center, and b) it is easier, for the verifying observation, to ‘escape’
from the closed N-class (2-sided escape chance) than from the open ended outer classes. At a different level of
explanation, there is lack of skill near the mean because in the definition of skill we compare the method in
need of verification to random forecasts as the reference. The latter happens to perform, in the rms sense, best
near the mean, Lack of skill near the mean is not restricted to categorical forecasts or to any specific lead time.

Rather than recommending a solution, we caution against the over-interpretation of the notion of skill-by-
class. It appears that low skill near the mean is largely a matter of definition and may therefore not require a
physical-dynamical explanation. We note that the whole problem is gone when one replaces the random reference
forecast by persistence.

We finally note that low skill near the mean has had an element of applying the notion forecasting forecast
skill in practice long before it was deduced that we were making a forecast of that skill. We show analytically
that as long as the forecast anomaly amplitude is small relative to the forecast rms error, one has to expect the

anomaly correlation to increase linearly with forecast magnitude. This has been found empirically by Tracton
et al. (1989).
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1. Intreduction

It has been noted for decades by many workers in
long range weather forecasting that skill of categorical
forecasts, when decomposed into contributions from
each category separately, has a tendency to be low, if
not absent, in the “near normal” (N) category. For
instance Gilman (1986), in discussing categorical
forecasts of winter mean temperature in three classes
over the United States, noted how completely the skill
of the forecasts is concentrated in the categories Below
(B) and Above (A), see his Fig. 4. Similar kinds of
observations were made by Namias (1964), Folland
et al. (1986), Shabbar (1989), Epstein (1988), Toth
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(1989), Livezey et al. (1990), and privately by many
others in several countries. This simple fact has had
quite an impact on the way the official monthly and
seasonal forecasts for the United States have been pre-
sented to the user and the public since the middle of
1982 (Gilman 1982; Lehman 1987). Livezey (1990)
capitalized on the issue by presenting a map of skill
over the United States calculated for only those cases
when either A or B were forecast.

The lack of skill of forecasts for ‘“near normal”
weather (temperature mostly) may have been noted
by many, but a credible discussion as to why this hap-

- pens is missing in the literature. The problem has, to

our knowledge, mostly been noted by long-range fore-
casters who have traditionally favored categorical
statements, but as we shall see, it occurs at all lead
times and is not restricted to just categorical forecasts.

Absence of skill in a given class (or portion of the
frequency distribution of the predictand) would be a
most interesting diagnostic: if we could understand why
it happens, and find a cure to the problem, and if an
increase of skill in the ill-performing class would lead
to an overall improvement of the forecasts. The lack
of skill in the N class is also interesting, because to
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many laymen it must seem most unlikely that we do
better at forecasting the outer classes than at forecasting
near normal. It seems to defy logic, also because con-
servative regression forecasts dictate to us to forecast
close to the mean.

In his essay Gilman (1985) explicitly states that we
would very much like to forecast the extreme cases
correctly, those “real terrible months,” but that at
present all we can do is to alter slightly the frequency
distribution of expected weather categorized in fairly
coarse classes. “The tails of the conditional frequency
distribution are the most uncertain thing about it”
(Gilman 1985). At first sight, this emphatic statement
seems inconsistent with the notion that all skill resides
in the A and B classes. For later reference we call this
the Gilman paradox. From examples given in section
3, we get the impression that *‘skill” (as we measure
it) increases monotonically away from the mean, so
the paradox cannot be solved by concluding that all
skill is in the shoulders of the distribution.

Our discussion obviously requires definitions of
‘skill’ and what we mean by “better.” Right from the
outset we must be prepared to find that the whole
problem of low skill in a given class could be a matter
of a) definition, b) framing the forecasts, ¢) the partic-
ulars of the verification method and d) over-interpre-
tation of the notion “skill by class.” It is possible, how-
ever, that there are intrinsic properties in the atmo-
spheric dynamics/physics that would make forecasts
for certain types of anomalous weather easy, and fore-
casts of non-descript, near-normal weather more dif-
ficult. In synoptic terms, it may well be that once the
circulation is strongly anomalous, it is relatively easy
to forecast a continuation of the outer weather class.
While close to the mean, the success of the forecast
depends too much on details whose predictability (un-
der all circumstances) is limited.

Note also the following: the skill of forecasts is
quoted to be high when the forecast calls for anomalous
weather, i.e., there has been a clear element of fore-
casting forecast skill to it long before it was deduced
that we were making a forecast of that skill. Forecasting
forecast skill only recently has become a popular topic
because of efforts made in numerical weather predic-
tion to understand why certain forecasts are very good
and others bad. We argue that Branstator (1986), who
found that 72-h Northern Hemisphere height forecasts
score higher anomaly correlation when the forecast
height anomaly itself is large, was dealing with a similar
issue. Nap et al. (1981) found the following to be true
as well: whenever the observed weather itself turns out
to be anomalous, the skill of categorical forecasts is
found to be high.

In this article we first define the phenomenon (sec-
tion 2), then give some unpublished well-documented
examples (section 3) and discuss likely explanations
for the lack of skill in the N class (section 4). The
primary purpose is to increase our understanding as

HUUG M. vaN DEN DOOL AND ZOLTAN TOTH 77

to why it happens. Conclusions and discussion are pre-
sented in section 5.

2. The problem

Suppose we make a total of M categorical forecasts
of a weather element, say temperature. The frequency
distribution of observed temperature can be used to
define three climatologically equiprobable classes
named A (bove), N(ormal), and B(elow). The (over-
all) skill score S may be defined as

H-F
S:

* 100, (1)
where H is the number of correct forecasts and F is
the number of correct forecasts expected a priori by
chance, i.e., M/3 for three classes. S measures precisely
how many hits per 100 forecasts we score over and
above the hits expected by chance. A forecast is a hit
when the forecast class is correct. Although measures
of skill are somewhat arbitrary, they always have in
common a comparison of the forecast method in need
of verification to a standard of reference (Murphy and
Daan 1985). For (1) the chosen reference to determine
E could be the random forecast, and a forecast method
that scores more/less hits than random forecasts is said
to have positive / negative skill score .S.

S is an overall skill score measure and can be de-
composed as follows:

S = Sx + Sn + Sp, (2)

H,—E
ZA A 4100 ete.

M

Here H, is the number of hits in the A class, E, is the
number of hits expected by chance for the A class, and
M remains as before the total number of forecasts. If
M, is the number of forecasts landing in the A class,
we often tacitly assume E, = M,/3 (which would*be
M /9 if the frequency distribution of the forecasts equals
that of the observations).

The problem noted by Gilman (1986) and investi-
gated here can be stated as follows:

S%SA‘FSB,

Obviously, if we could somehow elevate Sy, we are,
perhaps naively, entitled to expect a higher overall S.

In the United States, the Heidke skill score is often
used:

where S, =

and Sy~ 0 orsmall

H-F
M—-E

where all symbols have the same meaning as in (1).
Using SS instead of S we can state the problem in
nearly the same way. We will mostly use S, however,
because skill decomposition is slightly more compli-
cated when using SS, particularly for non-equiprobable
classes.

SS =

* 100, (3)
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Eq. (2) can be applied straightforwardly to any
number of classes of any imaginable width. For con-
venience we will use one more skill measure Q, defined
as

H,— E;
= — %100,
O M, *
which reads like a legitimate skill score for class I (I
= A, B or N). Obviously we can write

My
M
If the frequency distribution of the forecasts equals that
of the observations, the information gathered from in-
specting the Qs is identical to that obtained from the
S1sin (2), i.e., 81/ O = M;/M. For instance S = O,/
3 for three equiprobable classes (I = A, B, N).

With this straightforward framework in mind, we
now proceed to present three examples of forecasts that
lack skill in the N class. It is only for later reference
that we point out here two important facts about skill
as expressed by (1) and (4). The first is that two-class
errors are no more damaging to the skill scores than
one-class errors. The second is a difficulty in deter-
mining E; in (4)—unless stated otherwise, E; will be
M,/ 3 for three equiprobable classes.

(4)

My My
= —_— +_. .
S Oat I7; O~ IY; Os

3. Examples

Three examples will be presented in some detail.

The first is a specification experiment. Suppose we
knew the atmospheric circulation in advance, how
much skill would we have regarding forecasts of the
daily maximum and minimum surface air tempera-
ture? In order to investigate this, we used 30 years of
daily minimum and maximum temperatures at Bu-
dapest (1 January 1951-31 December 1980) and the
daily circulation catalog developed for Hungary by
Peczely (1983). For each month (i.e., January) a con-
ditional anomaly temperature frequency distribution
in five equiprobable classes was made for each circu-
lation type using daily data of all 30 Januaries. Then,
for each day in all 30 Januaries a temperature forecast
is made as follows. First we identify the Peczely cir-
culation type valid on the day in question. The cate-
gorical temperature forecast is then the most likely of
the five classes in the conditional frequency distribution
associated with that particular Peczely type. These
forecasts of instantaneous weather do not refer to any
lead time in particular—using them gives an upper
limit to forecast skill provided we know the circulation
type in advance. Note that we did not apply our pro-
cedure to independent data, but to the developmental
1951-80 period. Table 1a gives the verification of these
forecasts, namely the contingency table, the skill score
S, and the contributions per class calculated as gross-
averages over all years and months. It is immediately

VOLUME 6

clear that, by our skill measure .S, almost all skill resides
in the outer classes. In fact, skill has a tendency to
increase with distance from the center, i.e., the Much
Above and Much Below classes contribute heaviest to
S. We note only in passing by how low the overall skill
is. The results for maximum and minimum tempera-
ture are consistent. We repeated all calculations using
an objective definition of circulation types over the
Atlantic-European region (Bartholy et al. 1984 ). This
gave us essentially the same results. One specific reason
here as to the small contribution of the N class to S
(less than 1.0) is that the N class is rarely the most
likely category associated with a given circulation type,
i.e., we rarely forecast the N class. But also when we
measure skill per class, using O, we find the outer classes
to perform better by a factor of more than 2.

For comparison, we show in Table 1b the results of
operational forecasts made at the National Meteoro-
logical Center (NMC) during fall 1957 to summer 1963
for the mean temperature over the United States av-
eraged over day 2 through day 6. These forecasts have
a skill rather comparable to S reported in Table la and
are likewise verified in a 5 class system (although not
quintiles). Although the details are quite different, we
see a major similarity in that most skill is contributed
by the outer classes, particularly when viewing it
through the Q measure.

The second example is based on the 3000 12-h 500-
mb height forecasts made by a limited area analogue
method described in Van den Dool (1989). The ob-
served initial heights at 38°N, 80°W from 27 January

TABLE la. The contingency table, skill and skill decomposition of
specification of maximum and minimum temperature at Budapest
provided that we have perfect knowledge of the Peczely circulation
type ahead of time. Five equiprobable classes are used. For minimum
temperature the contingency table has been omitted.

Maximum temperature

F\O MB B N A MA ZF
MB 11.4 7.3 5.4 3.8 1.9 29.9
B 3.6 5.5 34 2.9 1.7 17.2
N 1.4 1.9 2.4 1.7 1.0 8.4
A 1.5 2.3 33 4.6 3.6 15.4
MA 1.9 3.0 5.5 6.8 11.7 29.1
Zo 19.9 20.1 20.0 19.9 20.0 100.0%
MB B N A MA Overall
O 18 12 8 10 20
S 5.5 2.0 0.7 1.5 59 S=156
Minimum temperature
o) 15 10 6 9 15
S 4.9 1.2 0.8 1.3 4.4 S=12.6
MB B N A MA Overall

The five classes are MB = much below normal, B = below normal,
N = normal, A = above normal and MA = much above normal.
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TABLE 1b. As Table la but now for the NMC’s operational 2-6
day mean temperature forecast during Fall 1957-Summer 1963. The
extreme categories have 12.5% climatological probability, the three
center categories, 25% each (Courtesy of Dr. D. L. Gilman).

RnO MB B N A MA ZF

MB 3.9 3.6 1.2 0.6 0.1 9.4

B 5.3 11.5 7.5 5.4 1.2 31.0

N 1.7 6.2 6.7 6.4 2.1 23.1

A 0.9 4.7 7.1 10.5 3.0 28.3

MA 0.1 0.6 1.3 3.0 3.1 8.2

2o 11.9 26.7 239 259 11.6 100.0%
MB B N A MA Overall

O 29 10 5 11 26

M 2.8 3.2 1.2 3.2 2.1 S=125

0000 UTC through 5 February 1200 UTC during
1963-77 are used to determine three equiprobable
classes empirically. The original point height forecasts
are, for the current purposes, transformed to categorical
forecasts simply by checking in which class the point
forecasts fell. The results are summarized in Table 2a.
The overall skill (S = 42.6) is quite high but the de-
composition shows that 75% of the skill is due to A
and B. Note that 2-class errors are virtually absent, a
feature not honored in the way we calculate skill via
(1). Each of the possible 1-class errors occurs about
6% of the time. While forecasts for N may fail on both
sides (i.e., the observations ‘“‘escape” to A or B), fore-
casts for A or B have only one-sided fail chances.

Because the frequency distribution of observed and
forecast heights are almost the same, there is no need
to discuss the @-measure.

For comparison, Table 2b shows a skill analysis of
3000 persistence forecasts verifying at the same place
and times as the analogue forecasts. Although S(37.0)
is slightly lower than that for the analogue forecasts,

TABLE 2a. The contingency Table, the skill score and its decom-
position for 3000 12-h forecasts of 500-mb height at 38°N, 80°W
using a limited area analogue method. Three nearly equiprobable
classes are used. In order to avoid artificial skill we carry the exact
frequency of occurrence for each class as indicated in the lines where
the calculation of S, etc. is explicitly given.

F\O A N B 2
A 27.6 5.7 0.1 33.4
N 5.9 229 6.7 35.5
B 0.1 5.5 25.5 31.1
o 33.7 34.0 32.3 100.0%

Sa =27.6 —33.4+33.7/100.0 = 16.4
Sn = 22.9 — 35.5%34.07/100.0 = 10.8
Sp =255 — 31.1%32.3/100.0 = 15.4

A N B Overall
O 49 30 50
S 16.4 10.8 15.4 S=426
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TABLE 2b. As Table 2a but no persistence forecasts.

O A N B 2F

A 25.7 73 0.3 333

N 8.0 19.0 6.3 333

B 0.0 7.7 25.7 333

2o 33.7 34.0 32.3 100.0%
A N B Overall

O 43 23 45

St 14.4 7.7 14.9 S$=370

the results in Tables 2a and 2b are surprisingly similar.
Apparently even a forecast as simple as persistence suf-
fers from a lack of skill for near normal weather. The
decrease in overall skill (from analogue to persistence
methods) is most clearly seen in a decrease of skill in
the N-class. By increasing the 1-class errors by about
1%, the skill in the N class obviously suffers more than
the skill in the outer classes.

The third, last, and lengthiest example is a con-
structed case, amenable to easy further analysis, that
we will rely heavily upon in section 4 for the expla-
nation. We will also use this example to move from
skill for discrete classes to continuous measures of skill.
Assume that successive atmospheric observations x; are
generated by a linear first order Markov process

Xitt = pXi T €

(5)

where the random number ¢; is drawn from a normal
distribution with zero mean and standard deviation 1.
The autocorrelation is denoted by p, and 0 < p < 1.
The expected value of X; is zero and its standard de-
viation (sd) is (1 — p?)~'/2. An “observer,” who knows
all past x; without error, is asked to make a forecast
for x;.,. Since ¢ is not known in advance, the best
forecast (certainly in root-mean-square (RMS) error
sense) is given by

Sirr = px;. (6)

For the purpose of our paper, (6) represents the most
instructive forecast scheme which we name damped
persistence (DP).

Assuming that p is perfectly known, the forecast error
(fe) of DP will be

(7)

Hence the expected RMS value of the forecast error
is 1.

The most important feature to note in (7) is that
the error does not depend on x; itself. Independent of
forecast magnitude (i.e., the absolute value of /1), the
expected rms error will be 1. By lower case rms we
denote from now on the expected root-mean-square
error as a continuous function of f;,,, while the upper
case “RMS” error is the root-mean-square error inte-
grated over all possible forecast magnitudes (i.e., the

feir1 = firs — Xiey = —6i.
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regular definition ). Because the expected rms error is
always 1 we can say that DP is a forecast scheme with
uniform rms error, (This remains true for p = 0, but
not for p = 0, a singular limit). Other schemes (a ran-
dom forecast, and to a lesser extent, persistence ) have
rms errors that increase monotonically with | fi.|. (We
shall argue in the discussion that many forecast
schemes, including operational ones, have more or less
uniform rms error.)

Taking the rms error as our sacred verification tool
we could tell the user of the forecast that the DP method
has uniform accuracy and is equally reliable for extreme
(large | fi+1|) and close to normal (| f+| =~ 0) weather
events,

But now consider a verification of a three-class cat-
egorical forecast in the same DP setting. To this end
we have generated 50 000 x;s through (5), choosing p
= (.40. The tercile borders are chosen as +0.48 (i.e.,
0.43xsd) to create three nearly equiprobable classes
for x;. Forecasts f;,;, made by (6) are said to be for
the A, N, or B category if the f;;; (a point forecast) fell
in that class. The verification results are given in Table
3a. While the observed frequencies are, by construction,
close to 5 for each class, the forecast frequencies are
obviously very much biased towards the N class. From
Table 3a we calculate S = 8.0 and, because it is obvious
that most skill resides in the outer classes, we would
be tempted to agree with Gilman (1986). We now have
an apparent contradiction in that forecasts made by
DP have uniform accuracy and yet very little skill in
the N class.

In Table 3a most forecasts are for the N class. A
common procedure to avoid forecasting N too often
is called forecast inflation (Klein et al. 1959). Table
3b is given to show that if we “jack up” the forecasts
by reducing the tercile borders for f;;; to £0.22 we
increase the total skill (consistent with Glahn and Allen
1966) but have not changed the picture regarding low
skill in the N class (in fact it decreased). We have re-
peated the above experiments for a) additional samples
of 50 000 forecasts, b) for a variety of p values, c) using
the Heidke skill score and found the result (low skill
in the N class) to be absolutely robust.

TABLE 3a. As Table 2a but now for data generated by a first order
Markov process and damped persistence as the forecast method. The
autocorrelation is 0.4 and the tercile class limits (both for forecasts
and observations) are + and —0.48 (i.e., 0.43*sd).

RO A N B ZF

A 7.8 4.1 1.8 13.7

N 23.5 25.1 234 72.0

B 1.8 4.0 8.4 14.2

Zo 33.1 33.3 33.5 100.0%
B N A Overall

O 24 1.6 25

Y 33 1.1 3.6 S$=80
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TABLE 3b. As Table 3a but now the tercile class limits are + and
—0.22 for the forecasts and + and —0.48 for the “observations.”

O A N B 2F

A 16.2 10.6 5.7 32.5

N 11.0 12.3 11.3 34.6

B 59 104 16.5 329

2o 33.1 33.3 33.5 100.0%
B N A Overall

0, 17 2.2 17

S; 5.4 0.8 5.5 S=117

In another set of experiments we widened the N class
(for observations and forecasts alike) at the equal ex-
pense of A and B. The results are given in Table 3c.
Although an N class covering slightly over 50% of the
x;s achieves the goal of making Sy more or less equal
to Sa and Sg, we also found the overall S to have gone
down. We assume that high S'is the first priority. From
Daan (1985) we know that it may be very difficult, if
not impossible, to compare S for different class con-
figurations. Another indication for that uncomfortable
circumstance is that Table 3b has higher S than Table
3a, even though an identical set of point forecasts are
used. The inflated forecasts (Table 3b) have higher rms
error and yet a higher skill score S. Using a wider N
class leaves the rms error unchanged but reduces S, as
indicated in Table 3c. (If maximizing S is a worthwhile
goal, either inflated forecasts or shrinking the N class
[down to a two class system] is recommendable.)

In spite of the message in Tables 3a and 3b, it would
be counterintuitive to conclude that DP is particularly
good for forecasting extreme weather. All we do is damp
the initial anomaly back towards zero. We get high
skill in the outer classes because extreme weather has
a large predictable component (px;), while success of
forecasts following zero initial weather depends entirely
on ¢;. Gilman’s paradox may well concern our inability
to forecast extreme weather when the current condi-
tions are not extreme. This appears certainly the case
for the analogue forecasts in Tables 2a and 2b. If we
calculate the expected percent of hits from persistence
as the reference forecast, we find S = 5.6 to decompose .

TABLE 3c: As Table 3a (without contingency tables) but now for
5 choices of the tercile class limits. Going down in the table the N-
class is widened.

% of observations

Tercile limits in N-class Sk SN Sa S
+0.48 333 33 1.1 3.6 8.0
+0.60 40.9 23 1.2 2.6 6.1
+0.70 46.9 1.6 1.1 1.7 4.5
+0.80 52.8 1.1 0.9 1.1 3.1
+0.90 58.3 0.7 0.7 0.8 2.2
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as 2.0, 3.1, and 0.5 for the A, N, and B classes, respec-
tively, thus presenting evidence that, in some sense,
we have more or less uniform skill. (This decompo-
sition cannot exactly be recovered from the information
supplied in Tables 2a and 2b because we need to know
the scores of persistence of the initial state for all cases
where the analogue forecast landed in a specific class.
But to good approximation, the skill decomposition
can be estimated from the difference of the diagonal
elements in the matrices in Table 2a and 2b.)

4. Explanation

A generic definition of skill always involves a com-
parison of the forecast method to a reference which by
common sense is considered to represent the zero skill
level. When we use the most common of all attributes,
the mean square error (MSE), the definition of skill
would be (Murphy and Epstein 1989)

_ MSE, ~ MSE,,
MSE, ’

1.e., the percent improvement in the MSE by our fore-
cast method (index m) over the reference (index r).
In order to write skill as a continuous function of dis-
tance (f) to the norm (f = 0), we introduce a local
skill s(f)

S (8)

mse, — mse
s(f) = ——=,

mse,

(9)

where the lower case quantities are thought to result
from the infinite ensemble of forecasts having a specific
forecast amplitude f. Assuming mse,, to be uniform
and noting that mse, for random forecasts (f;,; = R)
can be written (in the notation of the last example in
section 3)

MSER(andom) = <(R - xi+l)2> = (<R2> + st)
we can write (9), for R = fas

mse,,
[+ sd?

where the angled brackets stand for the expectation
and sd is the standard deviation of the x;s. (Expectation
is an operator very much like averaging.) For the in-
finite collection of random forecasts that accidently
land at the norm (f = 0), msey is expected to be sd?;
1.e., equal to the error of always forecasting climatology.
For | f'| > 0 mseg increases monotonically with | f |,
and so does skill defined by (9a), all the way up to s
= 1 for very large forecast amplitude. (Eq. [9a] should
not be construed to imply that we can reach s = 1 by
simply amplifying the forecast.) In Fig. 1 we have
sketched the situation for two levels of uniform rmse,,,.
The most important thing to note is that skill always
increases away from the center monotonically. This is
because the rms error of the reference method increases

s(f)y=1- (92)
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away from the center. The lack of skill near the center
1s caused by the tough competition of random forecasts
landing near the norm. If rmse,, > standard deviation,
we may see negative skill near the origin even if the
overall skill S is positive. If rmse,, < sd, we have a
minimum in skill, aithough positive, right at the norm.

The explanation is, so far, based on mse as the at-
tribute and may not be very relevant to the examples
given in section 3. How does this carry over to skill
based on actual and expected hits in a categorical ver-
ification system such as defined by (1)? Using the lower
case convention, local (i.e., amplitude specific) skill,
as in (4), is defined now by

h—e

qg= = 100, (10)

where all variables refer to class I. One can imagine K
equiprobable classes where K is very large allowing us
to write g, h, and e as functions of forecast amplitude.
Under those circumstances, e is uniformly m/K for
random reference forecasts. We further suspect that
h(f) is proportional to the width of the class (w(f)),
to m, and inversely proportional to rmse,,, in the way
explained in Fig. 2. Hence, (10) can be written ap-
proximately as

cmw/rsme,, — m/K
q= *

100, (11)
where c is a proportionality constant. (The expression
for A is strictly valid only as long as w/rmse,, is small!)
The constant ¢ can be determined by first realizing that
e (=m/K) can also be written, like 4, as cmw/rmseg.
Since right at the center rmsez = sd, we can evaluate
cmw(f = 0)/sd as m/K, and hence ¢, for all closed
classes, is determined by ¢ = sd/(Kw(f=0)).So (11)
can be written

sd % w(f) _ 1
g(f) = 2%m WI((f=O) £100, (1la)

g is a function of forecast amplitude fonly through the
argument w(f). In this derivation, non-uniform g is
seen to be associated by non-uniform w. Since, for a
normal distribution, w increases away from the mean,
g will likewise increase. This is, with reference to Fig.
2, because the observations (given the forecast) escape
more easily from a narrow than from a wide class.
Right at the center, g is negative if and only if rmse,,
> sd, even if the overall skill is positive. This is the
likely explanation of Livezey et al.’s (1990) negative
skill in the N class (their Table 1). The fact that rmse,,
is even larger than sd in operational methods, is a con-
sequence of the habit of jacking up the forecast (Klein
et'al. 1959).

The derivation of (10)—(11a) was based on choosing
K equiprobable classes, which, in (10), leaves only A
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FIG. 1. A sketch of local skill using a definition based on the rms error as attribute, see Eq. (9a). Along the x-axis we have anomaly
amplitude for observations (x}, forecasts ( /'), and random forecasts (R). Presented are methods with an rms error smaller and bigger,

respectively, than the standard deviation of x.

as a function of f. (This is a choice to make it easy to
derive (11a), not an assumption.) If one chooses, al-
ternatively, the classwidth w(f) such that 4, in (10),
becomes independent of f; then the dependence of ¢
on fis transferred to e, without any change in results.

The explanations based on hits and mse as attribute
are somewhat similar but not identical. The only com-
mon factor is the importance of the ratio rmse,,/sd in
determining whether skill near the center goes negative.
In (11) we have low skill near the norm because w is
small where the probability density is high, which is
near the norm for a Gaussian distribution. It follows,
therefore, that if the forecast variable had a uniform
frequency distribution, local skill, as defined in, (11)
would be uniform as well, and if the forecast variable

had a U-shaped frequency distribution (example: to-
morrow’s cloud amount) we would find a puzzling
abundance of skill in the N class. On the other hand
the explanation based on (9) holds for any frequency
distribution. This is because the rmse keeps increasing
for bigger and bigger errors while a miss is only a miss
no matter how large the actual error. Some definitions
of skill punishing 2-class errors more severely than 1-
class errors would require a mix of (9) and (11) to
explain the lack of skill near the center.

It seems to us that (11a) explains, to a large extent,
the lack of skill for near normal temperature or height
in all examples given in section 3, and for almost all
examples quoted in the Introduction. There is, how-
ever, one more very important detail. While ¢ in (11)
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FIG. 2. A sketch of the notion escape chance. Along the x-axis we have class I of width w and portions of class I — 1
and I + 1. The curve represents the frequency distribution of observations given a forecast for class I. The verifying
observations x;,; will be drawn from this distribution which has (x;;; — fi+1 ) = 0 and standard deviation rms€memod. The
chance of a hit is clearly proportional to the ratio of w to rmsenetmoa-

is the same for all closed classes, it is larger for the
extreme open ended classes (to be precise: by a factor
of two in the last example of section 3). As long as K
goes to infinity this is a minor detail, but in practice X
= § or K = 3 only. Therefore, in a 3-class system, even
if the forecast variable has a uniform frequency distri-
bution, the skill will be lower in the N class than in
the outer classes.

5. Conclusions and discussion

It is not possible to say briefly why skill has been
observed to be low in the near normal class and high
in the outer classes. Superficially, it is because a) class
width w increases relative to rmse .moq) away from the
mean, i.e., the likelihood of observations escaping the
forecast class becomes smaller for wider classes and b)
the likelihood of observations escaping the forecast class
is considerably higher for a closed (IN) than for an open-
ended class (A and B). With respect to a), one might
add at the next level of explanation that the low skill
near the mean occurs because ¢) we use forecast meth-
ods that generally turn out to have more or less uniform
rmse,, while d) the observations (at least temperature,
height) tend to have frequency distributions peaked
near the normal value. At yet another level of expla-
nation we have low skill near the center because e) we
compare an attribute of the method in need of verifi-
cation to a similar attribute obtained by random fore-
casts as the reference. On top of all this, one can define
skill in more than one way so as to make reasons a)
to e) relevant in slightly different ways. An interesting
conclusion is also that skill near the center goes negative
if rmse,, > sd.

The above explanation has validity as long as rmse,,,
is more or less uniform and the random forecast is the
reference. Uniform rmse is likely in all examples quoted
in the above because, in our efforts to maximize overall

skill S, we have to minimize RMSE,,,, which is achieved
by uniform rmse. Statistical forecasts would generally
work that way. For example, regressing seasonal mean
temperature in the United States against antecedent
Southern Oscillation Index results in uniform rms error
and the smallest possible RMSE in the temperature
forecast.

The usage of the random forecast as the reference is
our choice and could be replaced by any other. While
for overall S in (1) it rarely matters (exception noted
by Radok 1988) whether the reference forecast is a)
random forecast, b) always climatology, i.e., always N-
class, or ¢) always above (A) or always below (B).
These choices become critically important when de-
composing skill. At first sight we have no choice, in
(9) and (11), but to use the random forecast as the
reference. After all, if we always forecast climatology
as reference then there is no mse, to compare the mse,,
to away from the mean. But then why do we want to
compare mses (or hits) for the same distance (| R|
= | fir1]) to the norm anyway? The reference forecast
is not supposed to know what we are doing under the
“method.” An extreme pathological example: If ““al-
ways climatology” is the reference, and the method is
a random forecast, then the total skill S = 0 will de-
compose into Sy = ~% and S, = Sz = +Y%. In order
to prevent such pathological behavior, a linkage is often
made between the method and the reference. For ex-
ample, in (4) E; would be assumed to be proportional
to M, (Livezey et al. 1990). If we let E; be determined
by persistence there is no linkage assumption, and yet
the pathological behavior of skill by class is gone.

Of course there are “cures” for the problem of low
skill in the N class (such as narrowing the N class to
zero: a two class system, or transforming the predictand
to have a uniform frequency distribution). None of
these cures necessarily make for better forecasts, since
the problem is largely definitional. We only mention
that the use of persistence as the reference method (in-
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stead of the random forecast) makes skill rather uni-
form.

It is easy to criticize the notion of skill-by-class (or
skill as a function of forecast amplitude) on several
accounts. More than likely we are over-extending and
over-interpreting a definition of skill never designed to
be decomposed. Comparing skill in neighboring classes
may be as meaningless and confusing as comparing
over-all skill (even of a set of identical forecasts) as
determined by, say, a 3- and a 5-class system (Daan
1985; Wagner 1989). Although it is factually true that
skill in the N-class is low (as measured by (2) and (4)),
it may not imply anything very interesting about our
capability to forecast in general or about the physics
of the atmosphere. The pathological example men-
tioned above (decomposing zero overall skill into
—%, for N and +% for A and B, respectively) is a case
in point here. We add another example to show how
questionable the decomposition is. Using Eq. (5), we
generated data that ought to characterize one single
unique red noise process in which the autocorrelation
does not depend on forecast amplitude. Nevertheless,
we can empirically calculate the autocorrelation (p,;
index ¢ for calculated ) from a long set of x;s, separately
for those initial x;s that fall in the N-class and for those
that fall in either A or B. The empirical p. turns out
large for A and B (p. > p) and low (p. < p) for the N-
class. This is a bizarre result because from (5) we know
that a single ? has been used.

An underlying problem of definitions like (1) is that
only the diagonal elements of the contigency matrix
(refer Tables 1, 2, and 3) are used to measure skill. A
truly complete verification would take into account
also the off-diagonal elements, and would for instance
note that while the outer classes register more hits than
the N-class they also suffer from more 2-class errors.

Some potentially good aspects of skill by class are
a) it is one step in the direction of a more complete
verification, and b) it is a practical application of fore-
casting forecast skill. A great difficulty is that the ver-
ification tools have an impact on the forecast, or at
least on the way we present the forecast. Taking the
RMS scores to be sacred, we are discouraged to make
large amplitude forecasts (in fact at present skill levels,
monthly and seasonal forecasts would nearly always
fall in the N class), while the hit/miss based scores
(using Eq. (1)) encourage or allow a more daring fore-
cast. Discussions along these lines were published by
Klein et al. (1959) and Glahn and Allen (1966), but
it seems impossible to settie these issues.

A similar problem of low skill for flows with small
anomalies has recently been encountered in the de-
veloping field of forecasting forecast skill. Branstator
(1986) reports a modest correlation between the fore-
cast anomaly amplitude and the anomaly correlation
of dynamically produced 72-h Northern Hemisphere
500-mb height forecasts, thus implying a modest ca-
pability to know in advance when the prediction skill

VOLUME 6

of atmospheric flow will be below/above average. As
was shown by Murphy and Epstein ( 1989) the anomaly
correlation behaves rather similar to the skill score used
in (8). This led us to derive a local anomaly correlation
as a function of forecast amplitude. The detailed der-
ivation in the Appendix leads to

f/rmse,,
(1 + f%/mse,,)'"?"

As aresult we see that when 2/ mse,, < 1, the anomaly
correlation depends linearly on forecast magnitude as
long as forecast accuracy is uniform. Therefore, as with
the definitions of skill, we see the lowest ac near the
center no matter how accurate the forecast. For larger
/, ac depends less and less on f as far as definitional
constraints go.

The analytically obtained relation (12) between ac
and f is consistent with Tracton et al. (1989) who, in
trying to elaborate on Branstator’s result, were disap-
pointed to find empirically that the relation between
forecast amplitude and anomaly correlation score only
holds up for small anomalies and low anomaly cor-
relation. They blamed this on the “signal to noise ra-
tio,” implying that for small anomalies the verifying
observations are uncertain due to observational error.
From the above we can see that their explanation is
only partly correct. It is a signal to noise ratio problem
but the noise is not observational error (that is negli-
gible) but forecast error itself. What we conclude here
is that a forecast for a certain departure from normal
becomes credible only if that departure has a favorable
ratio to the forecast’s rms error.

ac(f) = (12)
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APPENDIX

Derivation of Local Anomaly Correlation
As in Murphy and Epstein (1989) we start from

MSEm(ethody = {(firs = Xix1)*)s
where, in lower case convention, we consider the in-
finite ensemble of forecasts that has a specific forecast
amplitude f. Obviously
mse,, = f2 + (xba ) = 2{fir1 Xir1 ).
A local ac is generically defined by

<fi+|xi+l>

ac(f)=W.
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Even though the {( ) operator is taken over all cases
of identical f, the covariance is not zero since we con-
sider departures from the climate rather than depar-
tures from the mean /. In view of the above, ac(f) can
be written

(2 +(x}) — msen)/2
ZENE

Assuming locally unbiased forecasts, we obtain <x,2+1 >

= 2 + mse,,, which is valid exactly in the example in

section 3, but holds only for reasonably small fin real
forecast situations. It then follows

S __ f/rmse,
(f? + msen)'’? (1 +f%/msey,)'/?’

ac(f) =

ac(f) =
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