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1.   Introduction
Recently,  the  National  Centers  of

Environment  Prediction  (NCEP)
implemented  a  new  coupled  forecast
system  (CFS)  for  seasonal  and
interannual climate forecast.  The CFS is
a fully coupled model for global ocean,
land  and  atmosphere.   Its  moderate
climate  drift  in  long-term  integrations
indicates  a  remarkable  advancement  in
climate  model  development.  Owing  to
its excellence in this respect, the CFS is
able to forecast sea surface temperatures
(SSTs)  and  climate  simultaneously,
having no need to adopt the widely used
“two-tier”  approach in  which SSTs  are
predicted first and are then used to force
the  overlying  atmosphere.   In  order  to
assess  the  skill  of  the  CFS  in  climate
forecast,  a  series  of  climate  hindcasts
have been conducted with  the CFS for
the period of 1981-2003.  This hindcast
dataset is not only useful for the forecast
skill  assessment,  but  also  valuable  for
the study of some other issues in climate
variability,  predictability  and
predictions.  With this dataset, we have
investigated  the  following  issues:  (1)
model climate drift in seasonal forecast
and its dependence on the lead time of
forecast; (2) variability and predictability
of  seasonal  climate;  (3)  ENSO  and  its
associated  climate  anomalies;  (4)  the

reality and the potential of the CFS skill
in seasonal climate forecast. Our analysis
starts from the DJF season and will  be
extended  to  other  seasons.  This  paper
presents  the  results  of  the  DJF  season
only.

2.   Hindcast and data
The  hindcasts  consist  of  fifteen 9-

month  integrations  starting  from  the
observed atmospheric and oceanic initial
conditions  for  each  month  during  the
period  of  1981-2003.  For  the  target
season  DJF,  the  predictions  from May
through  October,  corresponding  to  six-
month through one-month lead, are used
for  the  analysis.  The  variables  used  in
the  analysis  are  SSTs,  surface  air
temperature,  precipitation  rate  and
200hPa  height.  The  observational  data
used for  the  model  verification  include
the  OI  (optimal  interpolation)  SST,
CMAS  surface  air  temperature,  Xie-
Akin  precipitation  and  the  reanalysis-2
200hPa height.

3.   Results
(1) Model  climate  drift  and  its
dependence on the lead time of forecast

The model climate drift refers to the
deviation of the model climatology from
the observational.  The DJF climatology
in this study is defined as the average of
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the three-month mean over the winters of
1981/82  through  2003/04,  being
consistent  with  the  period  of  the
hindcasts.   For  the  model,  the  DJF
climatology  is  calculated  separately  for
each  lead  time  of  forecast,  so  as  to
examine the  dependence  of  the climate
drift  onto  the  lead.   Fig.1  exhibits  the
climate  drift  for  the  one-month  lead
forecast,  that  is,  for  the  forecast  with
October initial  conditions. It is obvious
that the drift of SST (upper panel) in the
equatorial region is within 1o  C only. As
to be shown later, this moderate bias in
basic state does not lead to serious errors
in SST variability in that region. In some
subtropical  and  mid-latitude  regions,
however, the bias is larger and even up
to  2o  C.   Because  the  SST  variation
beyond  the  tropics  is  basically  wind
driven, the larger bias over there is likely
due  to  the  bias  in  surface  wind.  In
contrast,  the  major  bias  of  the  model
precipitation  (middle  panel)  is  in  the
tropics. It is characterized by the deficit
in  the Indonesia  and northern Australia
area  and  the  equatorial  Pacific  and
Atlantic  Oceans.   The  surplus  is  seen
along  the  north  flank  of  all  equatorial
oceans and the south frank of equatorial
Atlantic,  Indian  Ocean  and  eastern
equatorial  Pacific.  The  bias  in  mid-
latitude  storm-track  regions  is  also
evident but much weaker. As expected,
for the boreal winter season major bias
of the model 200hPa eddy height (lower
panel) is in the middle and high latitudes
of the northern hemisphere. The positive
bias  over  the  western  and  the
northwestern Pacific and its downstream
wavetrain-like  patterns  suggest  the
height  bias  is  tropically  forced  by  the
precipitation (i.e.,  diabatic heating) bias
over the tropical and subtropical western

Pacific.  This conjecture has been proved
by a linear stationary wave model forced
with the tropical diabatic heating derived
from  the  precipitation  bias.  The
tropically forced wavetrain in the linear
model  resembles the height  bias of  the
model  very  much  (not  shown).   The
connection  between  the  bias  in  the
tropical  heating  and  that  in  the
extratropical circulation implies that the
correction  of  the  former  could  lead  to
alleviation of the latter.

Fig.1  CFS  climate  drift  in  SST  (upper),
precipitation  rate  (middle)  and  200hPa
height (lower).

Fig.2. CFS climate drift in SST with respect
to 0-month lead forecasts.
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Fig.3.  The  same  as  Fig.2  but  for
precipitation rate.

Fig.4.  The  same  as  Fig.2  but  for  eddy
200hPa height.

The dependence of the climate drift
onto the lead time of forecast is shown in
Fig.2  through  Fig.4  for  SST,
precipitation  and  200hPa  eddy  height,
respectively.  In order to present the lead
time  dependence  more  clearly,  the
deviations  of  the model  climatology in
these  figures  are  with  respect  to  the
model climatology calculated with the 0-
month lead forecasts  (i.e.,  the forecasts
with  initial  conditions  in  November),
rather  than  with  respect  to  the
observational as in Fig.1.  As lead time
increases,  the SST in the Indian Ocean
and the equatorial Pacific gets colder and
colder, with the magnitude to be around
1o C for the six-month lead in the central
equatorial  Pacific  and  the  southeast
Indian  Ocean.   The  systematic  cooling

can also be found in subtropical western
Pacific and the midlatitude Atlantic.  In
the  northeastern  Pacific  and  some
regions in the North Atlantic, however,
the  SST  gets  warmer  and  warmer.
Comparing  Fig.2  with  Fig.1,  it  is
interesting  to  see  that  the  cooling
tendency in the equatorial Pacific and the
southeastern  Indian  Ocean  tends  to
alleviate the SST bias in those regions,
whereas the warming tendency tends to
enhance  the  existing  warm  bias.   The
corresponding  tendency in  precipitation
(Fig.3)  is  dominated  by  the  dryness  in
the western and central equatorial Pacific
and the wetness in the maritime islands
and  the  north  flank  of  the  dryness,  in
response  to  the  SST  tendency  in  the
tropics.   The tendency in  200hPa eddy
height  (Fig.4)  is  obviously  a  wavetrain
emanated from the tropics forced by the
tendency  in  precipitation  (i.e.,  diabatic
heating).   Comparing  Fig.4  with  Fig.2
we can speculate that the SST tendency
in  midlatitude  oceans  is  driven  by  the
circulation  tendency  through  Ekman
effect.

(2) Variability and predictability of DJF
climate

The  analysis  of  climate  variability
begins  with  the  variance  (or  standard
deviation) of DJF mean with respect to
climatology.   In  order  to  examine  the
dependence  onto  the  lead  time  of
forecast,  the  variance  of  the  model
forecasts is also calculated separately for
each  lead  time,  similar  to  the
climatology calculation described earlier.
The results  are then compared with the
observational.   The  variance  of  the
model  forecasts  is  further split  into  the
part due to ensemble mean and the part
due to the ensemble spread.  The former
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is regarded as “signal” and the latter as
“noise” according to their predictability.
The signal-to-noise ratio thus provides a
quantitative  measure  of  the
predictability.   The  variability  and
predictability  of  200hPa  height  are
further assessed with the EOF analysis.
The  EOF  modes  explaining  the  total
variance  of  the  model  forecasts  (i.e.,
including  both  the  ensemble  mean and
the spread) tell the ability of the model
in  generating  the  observed  climate
modes, and the results for the ensemble
mean  show  the  potentially  predictable
modes.

For  SST,  it  is  found  that  for  one
through six month lead, the variance of
the  model  forecasts  has  caught  most
observed  features,  particularly  in  the
tropics,  but  with  slightly  larger
amplitude  in  the  equatorial  Pacific  for
one  through  four  month  lead  (not
shown).  For the signal part, the variance
decreases  as  lead  time increases,  while
for the noise part it increases as lead time
increases from one to three months and
then becomes saturated.  Fig. 5 presents
the  signal-to-noise  ratio  in  terms  of
standard  deviation.  The  ratio  is
characterized by the larger magnitude in
the tropics and a maximum in the central
and eastern equatorial Pacific, indicating
that the tropical SST is more predictable
than extratropical and the ENSO related
variability  is  of  the  highest
predictability.  It  is  evident  that  as  lead
time gets longer, the signal-to-noise ratio
becomes lower. This is basically due to
the  weakening  of  the  signal.   It  is
conceivable  that  the  system  will
eventually lose predictability when lead
time is long enough.  The predictability
estimation  given  here  is  more  realistic
than  that  given  with  the  AMIP-type

ensemble run, because the latter is based
on  the  assumption  that  boundary
conditions  are  predictable.   In  other
words, within the context of CFS we are
studying the first kind of predictability--
the initial condition problem, while with
the  AMIP-type  run  the  second kind  of
predictability--the  boundary  forcing
problem is examined.

For  200hPa  height,  the  variance  of
the  model  forecasts  well  resembles  the
observed  in  pattern,  but  its  intensity  is
moderately  weaker  in  North  Atlantic
region  and  stronger  in  North  Pacific
region than the observed for all the leads
(not  shown).   Similar  to  the SST case,
the 

Fig.5. The signal-to-noise ratio of CFS SST
forecasts.

Fig.6.  The  signal-to-noise  ratio  of  CFS
200hPa height forecasts.
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Fig.7. The first  three EOF patterns of total
variability of 200hPa height for observation
(left) and CFS 1-month lead forecast (right).

200hPa  height  signal  also  decreases  as
the  lead  time  increases,  but  the  noise
gets saturated at two-month lead, faster
than  the SST noise.   Fig.  6  shows the
signal-to-noise  ratio.  It  is  obvious  that
the high ratio occurs in low latitude and
the PNA region, suggesting that ENSO
related  variability  dominates  the
predictability  of  the  atmosphere.   As
expected, the predictability decreases as
lead time increases.  By the lead of  six
months, the signal becomes comparable
to  the  noise  in  the  PNA  region,
indicating  the  gradual  losing  of
predictability in that region.  Fig.7 shows
the  first  three  EOF  patterns  of  the
observed  and  the  one-month  lead
forecasted DJF 200hPa height.  For the
observations,  (left  panels),  we can find
the  signatures  of  the  TNH,  PNA,
NAO/AO,  WPO and Eurasia  modes  in
the three EOF patterns. The signatures of
these  modes  can  also  be  found  in  the
EOF patterns  of  model  forecasts  (right
panels). The resemblance of CFS to the
observation  in  EOF  patterns  further
demonstrated the ability  of  the CFS  in
generating  the  observed  climate
variability.  The predictable modes are 

Fig.8.  The  first  three  EOF  patterns  of
200hPa  height  of  CFS  ensemble  mean
forecast. The left is for 1-month lead and the
right is for 6-month lead.

shown in Fig.8, which presents the first
three  EOF  patterns  of  the  ensemble
mean forecasts  for  1-month  lead  (left
panels)  and  6-moth  lead  (right  panels).
The spatial patterns of the EOFs in left
panels are very similar to those in right
panels, but the amplitude in right panels
is  weaker,  consistent  with  the  weaker
signals in the 6-month lead forecast. The
first  EOF  is  obviously  the  ENSO
teleconnection  pattern,  and  the  third
EOF  reflects  the  non-linearity  of  the
teleconnections between El Niño and La
Niña.  The second mode is related to the
warm trend in the India Ocean.  Because
the  three  EOFs  have  explained  about
eighty  percent  of  the  variance  of  the
ensemble  mean,  the  predictable  DJF
climate anomalies by CFS are basically
tropically  forced.   In  addition,  the  low
degree of freedom revealed by the EOF
analysis indicates the quasi-linear nature
of the system.

(3)  ENSO  and  its  associated  climate
anomalies

Since ENSO is  the major source of
the predictability of inter-annual climate
variability, it is necessary to examine the
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performance  of  CFS  in  forecasting
ENSO related climate anomalies.  Fig.9,
Fig.10 and Fig.11 respectively show the
composites  of  the  observed  and  the
model forecasted SST, precipitation rate
and 200hPa height anomalies for ENSO
winters. From these figures we can see
that  for  1-month  lead,  the  model
forecasts  are  very  similar  to  the
observational  in  both  pattern  and
amplitude.  For 6-month lead, however,
westward shift and amplitude weakening
happen to all the three fields.  According
to the ENSO teleconnection theory, the
shift  of  the  200hPa  height  should  be
caused  by  the  shift  of  the  tropical
precipitation, which in turn is caused by
the shift of SST.  The SST shift is likely
related  to  the  cold  bias  in  the  central
equatorial Pacific shown in Fig. 2.  The
mechanism of the relation is not clear yet
and is to be analyzed later.  Comparing
the  left  panels  with the  right  panels  in
these  three  figures,  we  can  see  that
climate anomalies in El Niño cases are
almost  anti-symmetric  to  those  in  La
Niña  cases.   That  means  during  this
period  the  ENSO  related  climate
variability are pretty linear. 
  

In addition to the ensemble mean, we
have also examined the variation of

Fig.9. ENSO SST composite for observation
(upper), 1-month lead forecast (middle) and
6-month lead forecast  (lower).   The left  is
for El Niño and the right for La Niña.

Fig.10.  The  same  as  Fig.9  but  for
precipitation rate.

Fig.11.  The same as  Fig.9  but  for  200hPa
height.

ensemble spread associated with ENSO.
It is found that in North Pacific area the
ensemble  spread  in  La Niña  winters  is
significantly bigger than that in El Niño
winters  (not  shown).   The  result  is
consistent  with  that  obtained  from
AMIP-type  ensemble  runs.  Its
implication in  prediction is  that  in  that
area climate in El Niño winters is more
predictable than in La Nina winters.
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Fig.12. The CFS SST forecast skill verified
against observation (left) and that based on
the  “perfect  model  assumption”  (right)  for
lead  time  of  1-month  (upper),  3-month
(middle) and 6-month (lower).

Fig.13.  The  same  as  Fig.12  but  for
200hPa height.

(4) Forecast skill: reality and potential
The  CFS  forecast  skill  is  simply

measured  with  the  temporal  correlation
between model forecast and observation.
Considering the model is not perfect yet,
there  may be still  a  room for  the  skill
improvement.   In  order  to  know  the
upper  limit  of  the  skill,  we  have
calculated the potential skill based on the
“perfect model assumption”, that is, take
one ensemble member as “observation”
and the other fourteen member ensemble
as  prediction.   By  repeating  the
calculation for  all  fifteen members  and

taking  the  average  of  such  obtained
fifteen  skill  maps,  we  have  a  “perfect
model”  forecast  skill.   Though  such  a
skill can be model dependent, owing to
the  high  quality  of  CFS  it  may  still
provide  a  valuable  estimation  for  the
potential  predictability  of  the  seasonal
climate.   Figs.12 and 13 present the real
and  the  potential  skills  for  SST  and
200hPa height, respectively.  From these
figures we can see the current CFS skills
and its potential improvement.

4. Summary
(a) Part of the CFS climate drift  in the
extratropics is likely forced by the drift
in the tropics;
(b)  CFS  climate  drift  increases
moderately  as  lead  time  of  forecast
increases from one to six months;
(c)   ENSO  dominates  the  predictable
component  of  interannual  climate
variability;
(d) In the period of 1982-2004, ENSO-
related mean anomalies are pretty linear
in  both  CFS  and  OBS.   However,  the
spread of ensemble North Pacific region
is bigger in La Nina winters than in El
Nino winters;
(e) CFS shows pretty high forecast skills
for the tropics and appreciable skills for
the  extratropics  with  up  to  six-month
lead time;
(f) The decrease of forecast skills in the
extratropics  for  longer  lead  is  partially
due to the westward shift of the ENSO
teleconnection  patterns  in  forecast,
which in turn is caused by the westward
shift  of  tropical  SST  and  precipitation
patterns;
(g) The “perfect model” skills  show us
brighter future. 
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