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Note 1: A more complete article (Van den Dool et al 2003) on this subject will appear in the 
GCIP issue of JGR-D. 
 
Note 2: Real time forecasts based on soil moisture can be found at: 
http://www.cpc.ncep.noaa.gov/soilmst/index_jh.html 
 
 
 
 
 
 
 
1. Introduction 



 
 We have conducted an experiment to assess the real time skill in monthly and seasonal 
predictions based solely on patterns of antecedent hydrological information over the limited 
domain of the United States. The hydrological information is contained in a proxy for soil 
moisture at 102  locations over the lower 48 states. This soil moisture is calculated over the years 
1931-present from a local hydrological equation taking monthly precipitation (P) and 
temperature (T) as input, and producing soil moisture (w), evaporation (E), runoff and loss to 
groundwater as output. The initial condition (IC) for the forecast procedure is soil moisture at the 
end of the month (w30). We constructed an analogue, the so-called CA method (Van den Dool 
1994),  to the w30 fields, i.e. made linear combinations of soil moisture fields in the same 
months in years past so as to reproduce the IC to within a small tolerance. The coefficients 
assigned to the years past are then persisted and the subsequent developments in the historical 
years are linearly combined to form a forecast. This CA method has been running at CPC for soil 
moisture (acronym CAS is also used) in real time since 1998, and we added 1981-1997 in 
‘retroactive real time’ mode to form a large enough sample. In total we considered both seasonal 
and monthly forecasts at leads -1 to +6 months for 1981-2001, for the elements w30, E, T and P. 
From the outset we wanted to investigate non-local forecast methods, considering local effects, 
on evaporation and temperature mainly, as being established already and well documented 
(Huang et al 1996). In a non-local method we entertain the possibility of precipitation (the 
response) falling downstream of a soil moisture anomaly (forcing). 
 
2. Results 
 We found, see Fig.1, that we have about a 0.6 correlation in forecasting monthly soil 
moisture with a lead of one month (i.e. July at the end of May). This figure is higher in spring 
and somewhat lower in the early fall. The capability to forecast evaporation anomalies, see Fig.1 
as well, is very seasonal. During the cold half of the year, when E anomalies resemble T 
anomalies, the correlation is only 0.2-0.3, but in summer, when E anomalies resemble w 
anomalies, the skill of forecasts goes up to 0.6. We thus have some insight in patterns of 
anomalous water vapor input from the land surface into the atmosphere on a continental scale. 
During summer we are able to forecast E anomalies with skill considerably higher  than 
persistence, see Fig.2. 
 Skill of forecasting T, see Fig.3, is modest, reaching 0.2-0.3 in many month and seasons, 
but no clear seasonal dependence that relates unambiguously to the presumed physics of land 
atmosphere interactions.  Skill in forecasting P is quite low, barely 0.1 in correlation, but +ve in 
all months and seasons.  
 In Fig.4 we show the scores for 1 month lead JJA T&P forecasts for each year during 
1981-2001. As is common with all forecast methods, the skill fluctuates wildly (understanding 
this would be desirable, but beyond the scope of this paper) from case to case, especially for 
temperature. A good aspect of CA is that real terrible forecasts (highly negative correlations) are 
rare. JJA in 2000, a forecast that was available in real time, worked out very well, both for P and 
T. Famous years from a hydrological standpoint include 1993 and 1988. In neither year did we 
do well on P, but T in 1988 was one of the best. The forecast for summer 1998, the first we made 
in real time, was interesting because it followed the El Nino winter 1997/98. During 1998 the 66 
weights continued to be positive, on average, for historical El Nino years all the way through 
August, thus suggesting a degree of determinism in the forecast and reasonable skill as well. The 
physics appear to be that the soil moisture condition in spring, left behind by a prominent winter 



El Nino winter precipitation anomaly pattern, gets carried over into summer by land surface 
feedbacks. 
 
3. Discussion and conclusion  
 We did alternative experiments where the constructed analogue was built on E, T or P 
instead of w, and verified the forecast of all elements likewise. We found initial w to be the best 
for forecasting w itself and indeed for forecasting the other fields as well! This is important 
testimony that soil moisture is indeed the key!, as has been suspected by many for ages. 
 While CA is a powerful exploratory method, a potential drawback is that one needs to 
truncate data in EOF space in order to find solutions. With about 70 years of data we feel 
comfortable retaining about 30 EOFs, which generally explain from 90% (summer) to 93% of 
the soil moisture variance. EOF truncation deleted many mainly local features. So, in pursuing a 
remote response method we shaved off a lot of the local information, which, as we know (Huang 
et al 1996), contributes to forecast skill also. The linearity of CA in combination with EOF 
truncation may pose a particular problem if large amplitude wet anomalies occur on tiny spatial 
scales. Some merging of local and non-local forecast methods may have to be considered in 
practice.   
 It is not clear as to why the low skill in T and P especially is due to a low predictability 
ceiling in general or a particular weakness in any of the building blocks used here. Among the 
potentially weak points we should include that soil moisture over the US only is an unrealistic 
limitation from a physical point of view. Certainly land conditions over Canada and Mexico 
should be included, and it may even be that a proper evaluation of the role of soil moisture can 
only be made when the lower boundary condition over the (nearby or global) oceans are also 
included. Progress can be made along many lines. The most obvious one is to improve the 
estimate of soil moisture. Various land Reanalyses are underway, yielding much more detailed 
and physically realistic soil moisture in some cases over many decades (Maurer et al 2002; Fan 
et al, 2003).  The LDAS experiments (Mitchell et al 2000) are geared towards making model 
consistent soil moisture, so using full blown GCMs for a real time forecast is an obvious 
alternative to CA. Ultimately global land surface conditions will be prepared for the whole 
world, including a true assimilation of soil data (Walker and Houser 2001) but this may be a few 
years away. Merging lower boundary condition over the ocean and land, in the context of the CA 
method, is another point to consider. Anomalies in evaporation over land near the ocean need to 
be merged with E anomalies over the ocean itself, for the system to make physical sense. Of 
course, if predictability is fundamentally limited to start with, none of these improvements may 
yield much new forecast skill. A recent study (Koster et al 2002) found empirical evidence of 
feedback of soil moisture onto precipitation over the US to be only in July, and only in the center 
of the country.  
 There is no question that the CA forecast is non-local and this aspect may well be 
realistically modeled by CA, but this does not prove that the forecast is, or should be, skillful. If 
the forecast is too sensitive to the details of the initial soil moisture distribution we may not have 
any skill at all, no matter how well we model the physics. This could be a problem of the just CA 
method (i.e. maybe CA is too sensitive), or for all methods, we do not know. One has to realize 
that the notion of predictability of the first kind, i.e. sensitivity to uncertainty in the IC, has to be 
extended here to uncertainties in the initial lower boundary condition as well. The question as to 
how accurately we will ever know soil moisture is well beyond current insights. 
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Fig.1  The skill of the one month lead 
monthly forecast of w30 (triangles, dashed 

 

 

One month lead monthly forecast US
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One
line) and E (squares, full line), as a 
function of the target month (1 = Jan, 12 = 
Dec). For a better representation the 
December value (at 0) and January value 
(at 13) are repeated. Skill is expressed as 
correlation (times 100), which ranges from 
0 to 100 (dimensionless). The period is 
1981-2001. 
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Fig.2: The skill of monthly E forecasts verifying 
from May to September, as a function of lead. 
Line for persistence has squares and for 
Constructed Analogue triangles. Skill is 
expressed as correlation (times 100), which 
ranges from 0 to 100 (dimensionless). The period 
is 1981-2001. 
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 month lead seasonal forecast US
 Fig.3: The skill of 1 month lead seasonal 
forecasts of temperature (triangle) and 
precipitation (squares), as a function of target 
season (1 = DJF, 12 = NDJ). For a better 
representation the NDJ value (at 0) and DJF 
value (at 13) are repeated. Skill is expressed as 
correlation (times 100), which ranges from 0 to 
100 (dimensionless). The period is 1981-2001. 
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Fig. 4: The skill of 1 mo lead seasonal forecasts  

of temperature (triangle) and precipitation 
(squares) for JJA, year-by-year for 1981-2001. 
Skill is expressed as correlation (times 100), 
which ranges from 0 to 100 (dimensionless). The 
year is indicated as year-1900, i.e. 81 means 
1981. 
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