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The 2002 North Atlantic hurricane season
a. Overview

The 2002 Atlantic hurricane season featured twelve named storms, four hurricanes, and
two major hurricanes. Thisis one-half the average seasonal number of hurricanes measured since
amarked upturn in hurricane activity began in 1995 (Goldenberg et a. 2001). The climatol ogical
peak in Atlantic hurricane activity occurs between mid-August and mid-October from an
increased number of hurricanes and major hurricanes forming in the Main Development Region
[MDR, defined as the tropical North Atlantic south of 21°N and the Caribbean Sea]. During
2002 nine of the twelve named storms and all four hurricanes formed during this 2-month period,
but only three of these systems formed in the MDR.

The 2002 seasonal activity reflected the competing influences of three leading climate
factors: El Nifio, the active multi-decadal signal, and the Madden-Julian Oscillation (MJO). The
decreased activity in the MDR was related to El Nifio (section d1). However, key aspects of the
atmospheric circulation over the tropical Atlantic continued to reflect the ongoing active multi-
decadal signal, which moderated the “apparent” El Nino signal in portions of the MDR (section
d2). A “window of opportunity” for hurricane activity in late September and early October
developed in response to the westerly phase of the MJO, which temporarily offset the high
vertical wind shear associated with El Nifio during a period when conditions are climatologically

most conducive to hurricane development (section €).

b. Seasonal Activity
The National Oceanic and Atmospheric Administration (NOAA) defines the total

seasonal activity based on the combined strength, duration, and number of named storms and
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Fig. 1. Seasonal values of the Accumulated Cyclone Energy (ACE)

index for the total Atlantic Basin {blue) and the Main Development

(Vma) for al periods while the

Region (MDR) (red)., The ACE index for the MDR is based only on
systems that first become named storms within the MDR, which

includes the tropical WNorth Atlantic south of 21*N and the
Caribbean Sea. NOAA defines near-normal seasons as having a

system is either atropical storm or

total ACE value in the range of 65-103 x 109 kt2 (greenlines).

hurricane. For the 2002 season the total ACE index was 62.5 x 10° kt? (Fig. 1), or 73% of the

long-term median value. NOAA defines near-normal seasons as having atotal ACE value in the

range of 65-103 x 10° kt>. Therefore the 2002 season activity fallsinto the below-normal range.

Almost 75% of the total 2002 seasonal activity was associated with three hurricanes that

formed during a brief 6-day window of 18-23 September (Fig. 2). Two of these systems became
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Three tropical storms, two of

which became hurricanes (Isidore and Lili), formed in the MDR during 2002. Thisis only one-

third the average number of hurricanes forming in the MDR since the 1995 upturn in hurricane



activity, and is consistent with the EI Nifio- related suppression of hurricane formation in this
region. These three named storms accounted for 37.1 x 10° kt* (or 59.4%) of the seasonal ACE
value, which amounts to 55% of the 1950-2001 period mean for the region (Fig. 1). This deficit
in activity within the MDR accounts for 90% of the 2002 seasonal ACE anomaly of —31.5 x 10°
kt?.

Six tropical storms, two of which became hurricanes (Gustav and Kyle), formed over the
extratropical North Atlantic during 2002, and accounted for 22.7 x 10° kt* (or 36.3%) of the
seasonal ACE value. Long-lived Hurricane Kyle contributed to more than one-half of this
regional total. Three tropical storms also formed over the Gulf of Mexico during the season, but

accounted for only 2.7 x 10° kt* (or 4.3%) of the seasonal ACE value.

c. Landfalling U.S. tropical storms and

TS Bertha

hurricanes o f : TS Ed:ﬂllard

Seven named storms made landfall in the

United States during the 2002 hurricane

season, six astropical storms and one as

ahurricane (Lili). Five of these systems

made landfall along the Gulf Coast. The

first of these Gulf Coast systemswas TS

Bertha (Fig. 3a), which produced local
precipitation amounts of 25-50 mm in

southern Mississippi and Alabama. The

second was TS Fay and its remnant |ow- T ]
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Fg. 3. Total rainfal (mm) associated with (a) TS Bertha
dwing 4-5 Aug. 2002, (b) TS Edouard during 4-5 Sep., [c) TS
Fay during 6-10 Sep., (d) TS Hanna during 13-14 Sep. ()
Humicane Kyle during 11-12 Oct, and () Humdcane Lili during
2-5 Oct Z002.




pressure center during 6-10 Sep.

(Fig. 3b), which produced on
average more than 175 mm of
rain over southeastern Texas.

The third was TS Hanna, which

brought 75-125 mm of
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Fig. 4. Total rainfall {mm) associated with Hurricane

Isidore during {a) 23-24 Sep. and (b) 25-Z6 Sep. Panhandle (Fig. 3d). In late
2002,

September Hurricane Isidore brought extremely heavy rains (200-300 mm) to the Y ucatan

precipitation to the Florida

Peninsula (Fig. 4a) prior to making landfall along the Gulf Coast as atropical storm. In the
United States rainfall from TS Isidore during 25-26 September exceeded 200 mm from eastern
Louisianato the western Florida Panhandle, and al so extended northward across Mississippi and
Alabama (Fig. 4b). Hurricane Lili then followed with 100-150 mm of precipitation between 2-5

October across central and eastern
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during the season was Hurricane Kyle, which moved aong the South Carolina and North
Carolina coasts on 11-12 October after being downgraded to atropical storm.

August-October 2002 rainfall totals exceeded 600 mm along the Gulf Coast from eastern
Texas to western Florida, and reached 500 mm across most of Mississippi extending northward
into western Tennessee (Fig. 5a). These amounts are more than twice the long-term average (Fig.
5b) and are attributed to the landfalling tropical systems (Fig. 5c), which generally accounted for
40%-50% of the seasonal total in these areas (Fig. 5d).

New Orleans, LA. is situated within the seasonal rainfall maximum, and experienced
heavy rains from four named storms (Fig. 6b). A time series of daily rainfall totals at New

Orleans indicates approximately 35 mm of rain from both Bertha and Fay, and nearly 300 mm
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. Fg. 6. {a) Accumwulated precipitation (thid: curwe) and [b) daily
accumulation from these four rainfall totals (mm) at New Oreans, Lovisiana during June-October
2002, Panel (a) also shows accunwlation of climatological

predpitation (thin line), and accunulated departeres from normal

storms of amost 450 mm. (shading) beginning 1 June 2002. Green (bvown) shading denoted

an accumnulated precipitation surplus (deficit]).
d. Dominant climate factors influencing the 2002 Atlantic hurricane season
The Atlantic Basin seasonal activity during 2002 reflected the competing influences of
three leading climate factors: El Nifio, the active multi-decadal signal (section d2), and the

Madden-Julian Oscillation (MJO, section €).



1. EL NINO

The ENSO (El Nifio/ Southern Oscillation) cycle isamajor factor influencing interannual
variations in Atlantic hurricane activity (Gray 1984). During 2002 El Nifio was the primary
contributor to the seasona downturn in activity by causing a sharp reduction in the number of
hurricanes forming within the MDR during August-October. El Nino was also responsible for the
shortened period of tropical activity, with no named storms forming after 23 September and no
tropical storm or hurricane activity evident after 12 October.

The El Nifo contributed to

200-hPa Height and Anomaly

suppressed hurricane activity in the
MDR in three characteristic and inter-
related ways. First, it contributed to an

enhanced tropical upper-level trough

(TUTT) across the North Atlantic and to

Fig. 7. August- October 2002 mean (contours) and anomalous

(shaded) 200-hPa heights. Contour interval for heights is 30 m.  dll Overa” Weaker than average
Shading interval for anomalies is 10 m. Anomalies are departures

from the 1971-2000 base daily means

subtropical ridge across the heart of the
MDR (Fig. 7). Second, it was associated with enhanced westerly winds at 200-hPain the
Tropics extending from the Pacific Ocean eastward across the MDR (vectors, Fig. 8). Third,

these winds resulted in anomal ous westerly vertical wind shear across the eastern tropical North

Anomalous ¥Yerical Shear of Zonal Wind and

Pacific. northern South America, and Anomalous 200-hPa Yector Wind

most of the MDR (blue shading Fig. 8).
The resulting increase in the magnitude
of the vertical wind shear within the

MDR suppressed Atlantic hurricane

Fg. & August-October 2002 anomalous 200-250 hPa vertical shear of
zonal wind (shaded) and 200-hPa vector wind. 5hading interval for
wertical shear is 1.0 m s~ 1. fnomalies are departures firom the 1971-
2000 base dail y means.



formation similar to that discussed by Goldenberg and Shapiro (1986).

2. THEACTIVE MULTI-DECADAL SIGNAL

Large multi-decadal variations in seasonal Atlantic Basin activity are evident in the ACE
index time series (Fig. 1, also Landsea 1993, Landsea et al 1999). Above-normal activity
occurred during 1950-1969 and 1995-2002, while bel ow-average activity occurred during 1970-
1994. For the 1995-2002 period the average seasonal ACE index and the average seasonal
number of hurricanes and major hurricanes (Goldenberg et al. 2001) were larger than any
consecutive eight-year period in the record.

These fluctuations in activity have been linked to multi-decadal variations in several key

atmospheric circulation features within the MDR, including the vertical wind shear (Fig. 9a,
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Goldenberg et al. 2001), the tropical easterly trade winds (Fig. 9b), and the structure of the
African Easterly Jet (Fig. 9c). For the first half of the 1980s anomal ous westerly (i.e. increased)
vertical wind shear is evident over the central tropical North Atlantic (Figs. 9a, b), the tropical
easterly trade winds are stronger than average between 5°-10°N (Figs. 9c, d), and anomalous
anticyclonic relative vorticity occupies the tropical eastern North Atlantic along the equatorward
flank of the mean African Easterly Jet (Figs. 9e, f). This combination of conditionsis known to
be unfavorable for Atlantic hurricane formation.

Since the mid-1990s the circulation has featured more easterly (i.e. lower) vertical wind
shear over the central tropical Atlantic, along with weaker tropical easterly trade winds and

anomalous cyclonic relative vorticity along the equatorward flank of the African easterly jet.
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signal.

This multi-decadal variability has been related to three climate factors: 1) the Atlantic
multi-decadal mode (M estas-Nufiez and Enfield 1999, Goldenberg et al. 2001), 2) the leading
unrotated multi-decadal EOF global sea-surface temperature (SST) anomalies (e.g., Mo et al.
2001), and 3) West African monsoon variability (Hastenrath 1990; Landsea and Gray 1992;
Goldenberg and Shapiro 1996).

More recently Chelliah and Bell (2003) showed that the leading tropical multi-decadal
atmospheric mode in the NCEP-NCAR reanalysis system (Kalnay et a. 1996) not only accounts
for the multi-decadal variations seen in Fig. 9, but also captures low-frequency fluctuationsin the
above three climate factors themselves. This tropical multi-decadal mode is related to coherent
fluctuations in convective activity occurring throughout the global Tropics between the 1950s-
1960s and the 1980s-1990s, including the West African monsoon region, the central equatorial

Pacific, and tropical South America.

e. Intraseasonal hurricane variability associated with the Madden-Julian Oscillation (MJO)
Anomalous intraseasonal variability in hurricane activity has been linked to the Madden-
Julian Oscillation (MJO), which influences both the rotational and divergent components of the
wind in the MDR (Maloney and Hartmann 2000, Mo 2000). The easterly and westerly phases of
the MJO derive their names from the sign of the low-level zona wind anomalies over the eastern
tropical Pacific. The easterly phase is associated with enhanced convection over the central
tropical Pacific, and with negative (i.e., cyclonic) 200-hPa streamfunction anomalies, westerly
200-hPa zonal wind anomalies, and increased (i.e., anomalous westerly) vertical wind shear in
the MDR. These conditions are “El Nifio-like” and act to inhibit Atlantic hurricane formation in

the MDR (Mo 2000). Opposite circulation anomalies during the westerly MJO phase are “La
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Nifia-like”, and are associated with increased hurricane activity in the MDR. Maloney and
Hartmann (2000) suggest a nearly 4-fold increase in hurricane activity within the MDR during
the westerly phase of the MJO compared to the easterly phase.

Time-longitude sections of 200-hPa velocity potential anomalies between 5°N-5°S (Fig.
11a8) and 10°N-20°N (Fig. 11b) are used to identify both the El Nifio-related and M JO-related
variability during the 2002 hurricane season. The El Nifio- related anomal ous upper-level
divergence and enhanced convective activity over the central equatoria Pacific are associated
with negative velocity potential anomalies beginning early July 2002. Over the western tropical
North Atlantic and Caribbean Sea, positive velocity potential anomalies during much of the
season are associated with anomal ous upper-level convergence and descending motion/

suppressed convective activity. These conditions were most pronounced during the first halves of
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Fig. 11. Time-longitude sections of 5-day running mean 200-hPa velocity potential anomalies
averaged over the latitude bands (a) 5°M-5°% and (b) 10°-20°N. Contourinterval is 3 = 109 m? 5-
1, anomalies are departures from the 1979-95 base period daily means.




August and September and most of October, in association with the combination of EI Nifio and
the easterly MJO phase. Over the western MDR and Gulf of Mexico, the cyclonic streamfunction
anomalies (Fig. 12), the upper-level trough (Fig. 13a), and the westerly (i.e., higher) vertical

wind shear, are also stronger during these periods relative to the background El Nifio signal.
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Fg. 12. Daily time seres during 22 April-16 October 2002 of area-averaged anomalous 200-hPa
velocity potential (solid curve) and steamfuncton (shading). Yelocity potential anomalies are
calculated for the central tropical Pacific region bounded by (160°E-170°W) ([10-20°N]).
Steamfuncion anomalies are calculated for the Gulf of Mexico and Caribbean Sea bounded by
(100°W-60°W) (10 -30°N). Anomalies are departures from the 1979-95 base period daily means.

In contrast, the westerly MJO phase during both late July and late September is
associated with atemporary disappearance of the El Nifio- related enhanced convection from the
central equatorial Pacific, and with a shift of the negative velocity potential anomalies and
associated anomal ous ascending motion to the eastern tropical Pacific and MDR. Anticyclonic
streamfunction anomalies (Fig. 12) and an amplified subtropical ridge are also evident during
both periods over the Caribbean Sea and Gulf of Mexico. Importantly, the stronger MJO in late
September contributed to larger anomalies at a time when conditions are normally most
conducive to hurricane development (Fig. 13b).

Consistent with these conditions a broad area of anomalous easterly (i.e., lower) vertical
shear is evident over most of the MDR and across the western extratropical North Atlantic

during late September. Two mgjor hurricanes, long-lived hurricane Kyle, and ailmost seventy-
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200-hPa Height and Anomalous Verical Shear of Zonal Wind
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Fig. 13. Mean 200-hPa heights gcnntnurs] oveHaid with anomalous 200-350 hPa vertical shear of
zonal vand (shading] during (a) 16 Auiust- 15 September 2002 and (b) 16-30 September 2002,
Contour interval for heights is 30 m. Shading interval for anomalous vertical shear is 2.0 m 571,
with easterly shear anom alies shaded red and westerly shear anomalies shaded blue. Anomalies
are departures from the 1979-95 base perod daily means.

five per cent of the total seasonal activity, occurred in thisperiod. Lawrimore et a. (2002) also

note several periods of substantially increased activity during the 2001 Atlantic hurricane season

in association with the westerly phase of the MJO.
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