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Motivation

* Extreme precipitation affects nearly the entire CONUS.

 Stakeholders in water resources, agriculture, energy, and emergency managers and
tribal leaders all are impacted.
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Motivation

* Forecasting extreme precipitation 1s
exceptionally difficult!

* Statistical methods can help improve

forecasts (e.g., Herman and Schumacher
2018).

* Barlow et al. (2019) review paper

details extreme events with duration up
to 1 week.

* What about extreme precipitation
events on longer timescales?
» Subseasonal forecasts currently lack skill.

» Can we make improvements to
subseasonal extreme precipitation
forecasting?

Day 2 1-Year Resolution Term

Day 2 1-Year Reliability Term

a)

ML Final 0.143 kg@;‘} 0.088

LR PCA 0.117 | 0.151 | 0.076

0.130 | 0.092 | 0.120 | 0.107 ML Final g -0.095 | -0.018 | -0.012 | -0.006 | -0.016 | -0.013 | -0.025 | -0.028

0.108 | 0.087 | 0.099 | 0.089 LR PCA 4 -0.078 | -0.021 | -0.021 | -0.007 | -0.010 | -0.014 | -0.015 | -0.029

RF PCA 0.136 | 0172 | 0.085

0.123 | 0.089 | 0.115 | 0.100 RF PCA { -0.086 | -0.013 | -0.009 | -0.006 | -0.012 | -0.012 | -0.023 | -0.024

=

RF No PCA 0134 | 0171 | 0.083

0.123 | 0.085 | 0.108 | 0.100 RF No PCA 4 -0.083 | -0.014 | -0.014 | -0.004 | -0.013 | -0.008 | -0.017 | -0.026

Raw GEFS/R 4 0176 | 0.090 | 0.040 | 0.031

0.034 | 0.024 | 0.050 | 0.042 Raw GEFS/R 4 -0.070 | -0.042 | -0.027 | -0.029 | -0.018 | -0.027 | -0.010 | -0.034

Raw ECMWF 0.148 | 0.080 | 0.086

0.059 | 0.058 | 0.070 | 0.070 Raw ECMWF 4 -0.029 | -0.019 | -0.017 | -0.022 | -0.024 | -0.015 | -0.020 | -0.014

PCST  ROCK SW NGP

SGP  MDWST SE NE PCST  ROCK SwW NGP SGP  MDWST SE NE

Figure 10 from Herman and Schumacher (2018)

FORECAST SKILL

Weather forecasts
predictability comes from initial

aaaaa pheric conditions
Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources
Seasonal forecasts
cellent predictability comes primarily from
sea-surface temperature data
accuracy dependent on ENSO state
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The PRES?iP Team

e Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods

* Goals of the project:
1. Define databases of S2S extreme events.

2. Quantify statistical and dynamical links between S2S extreme events and
synoptic-scale and global scale precursors.

3. Improve capability to predict S2S extreme events.
4. Increase communication between research scientists and stakeholder communities.
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Research Questions

1. How well can a random forest (RF) classify days as being extreme or not extreme within the Central Plains and
Ohio River Valley?

2. Which atmospheric variables are most important in classifying extreme versus non-extreme days and where is
their importance maximized?



Overview of the Database

14-Day Extreme Pre ptt n Event Clusters (k=15)

* Events in the database (Dickinson et al. "
2021) are large-scale, longer-duration ’ ‘* w
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» Exceed 99th percentile, more than 7 days of
above normal daily precipitation, have areal

2 _ //;';‘;
extent > 200,090 km?. | & '_.,,. ,‘_‘ m

» k-means clustering on events to get “regions” ‘m i'a“'
 Timeframe: 1950 — 2018 “ ""5 b =4

> Training data: 15 Jan 1950 — 28 Dec 2000 f

» Testing data: 15 Jan 2001 — 28 Dec 2018

‘*Event independence ensured in database
generation.

Figure 9 from Dickinson et al. (2021)

Online table of events can be found at http://pres2ip.com/extreme-event-tables

Downloadable database available at
https://github.com/tydickinson29/PRES21Ppy/tree/master/pres2ippy/databases



http://pres2ip.com/extreme-event-tables
https://github.com/tydickinson29/PRES2iPpy/tree/master/pres2ippy/databases

Data

* ECMWF ERA-5 reanalysis (Hersbach et al.
2020); daily data on 1.5° lat/lon grid. Z PWAT Vi

» Standardize via 1981-2010 climatology. lag 0 lag 0 lag 14

* Predictors (7-day centered running mean):
» Geopotential height ] >\
= Averaged in [850, 300] hPa column 15 Jan 1950 o

» Precipitable water L 250 16 Jan 1950

]Lags 7,14

» Zonal, meridional wind components
= Averaged in [850, 300] hPa column

» Sea-level pressure _

* Predictand: 1 if day in extreme event, O
otherwise.

28 Dec 2000 \ : : /



Workflow

» Domain: [20°, 80°] N; [160°, 310°] E

* RF hyperparameters held constant:
» Gini impurity criterion
»Number of considered predictors at
each split: square root of total predictors

» Label weight: inversely proportional to
frequency

* Optimized RF hyperparameters:

»Number of trees: [100, 1000] A Forecast
CSI =
»Minimum samples to split leaf: [1, 4, A+B+C Yes No
16, 32, 64, 128, 256, 500] Yes A B
Observed
»10-fold cross validation No C D



Optimized Models and Accuracies

Split Leaf Samples Training CSI Testing CSI

Southern Plains 1000 0.475 0.0924
Ohio River Valley 100 64 0.819 0.0408
Southern Plains Ohio River Valley
Forecast Forecast
Yes No Yes No
Yes 270 1 Yes 322 1
Training = Observed Observed
No 297 18030 No 70 18205
Forecast Forecast
Yes No Yes No
- : Yes 22 50 o ; Yes 8 167
i serve serve
Testing No 166 6680 No 21 6722



Optimized Models and Accuracies

14-Day Event Attributes Diagram
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Gini Impurity Importance
14-Day Extreme Precipitation Event RF Predictor Importances
* Importance of predictors e == Souther Pains
calculated via their = e
effectiveness in splitting
samples higher in tree.
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* Lag 0 geopotential height,
zonal wind component most
important.

o
=
ul

0.10 A

Domain-Total Impurity Importance

o
o
a1

0.00 -

Z lag0 Z lag7 Z lagl4 PWAT lag0 uwnd lag0 vwnd lag0 SLP lag0
Variable



Geopotential Height Importance

Gini Importance

Total Importance: 0.2230

Training Data Composite of Z_lag0 in the Central Plains
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Z.onal Wind Importance

Gini Impo rta nce . Training Data Composite of uwnd_lag0 in the Central Plains
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Conclusions and Future Work

* Developed RFs currently have minimal skill in differentiating 14-day
event and non-event days.

* Geopotential height, zonal wind component most important in both
regions (e.g., Jennrich et al. 2020).

» Continue physical analysis to choose lags that will be most predictive.

* Future experiments:
o Use detrended anomalies.
o Add further predictors, e.g., omega.
o Employ PCA to reduce dimensionality, further increase signal-to-noise ratio.
o Weight days adjacent to event.

* Other PRES?iP presentations: Melanie Schroers, Olivia VanBuskirk,
and Devin McAfee.
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Southern Plains

Ohio River Valley

Meridional Wind Importance

Gini Importance

Total Importance: 0.1249
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Southern Plains

Ohio River Valley

Precipitable Water Importance

Gini Importance

Total Importance: 0.1219
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Southern Plains

Ohio River Valley

Sea-Level Pressure Importance

Gini Importance

Total Importance: 0.1052
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Geopotential Height Lag 7 Importance

Southern Plains

Ohio River Valley

Gini Importance

Total Importance: 0.1178
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Geopotential Height Lag 14 Importance

G i ni I m po rta nce Training Data Composite of Z_lag14 in the Central Plains
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