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Motivation
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• Extreme precipitation affects nearly the entire CONUS.
• Stakeholders in water resources, agriculture, energy, and emergency managers and 

tribal leaders all are impacted.

Credit: National Center for Environmental Information



Motivation
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• Forecasting extreme precipitation is 
exceptionally difficult! 
• Statistical methods can help improve 

forecasts (e.g., Herman and Schumacher 
2018).

• Barlow et al. (2019) review paper 
details extreme events with duration up 
to 1 week.
• What about extreme precipitation 

events on longer timescales?
ØSubseasonal forecasts currently lack skill.
ØCan we make improvements to 

subseasonal extreme precipitation 
forecasting?

Figure 10 from Herman and Schumacher (2018)

Adapted from the International Research Institute for Climate and Society



The PRES2iP Team
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• Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods
• Goals of the project:

1. Define databases of S2S extreme events.
2. Quantify statistical and dynamical links between S2S extreme events and 

synoptic-scale and global scale precursors.
3. Improve capability to predict S2S extreme events.
4. Increase communication between research scientists and stakeholder communities.



Research Questions
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1. How well can a random forest (RF) classify days as being extreme or not extreme within the Central Plains and 
Ohio River Valley?

2. Which atmospheric variables are most important in classifying extreme versus non-extreme days and where is 
their importance maximized?



Overview of the Database

6

• Events in the database (Dickinson et al. 
2021) are large-scale, longer-duration
extreme events.
ØExceed 99th percentile, more than 7 days of 

above normal daily precipitation, have areal 
extent ≥ 200,000 km2.

Øk-means clustering on events to get “regions”

• Timeframe: 1950 – 2018
ØTraining data: 15 Jan 1950 – 28 Dec 2000
ØTesting data: 15 Jan 2001 – 28 Dec 2018

vEvent independence ensured in database 
generation.

Figure 9 from Dickinson et al. (2021)

Online table of events can be found at http://pres2ip.com/extreme-event-tables

Downloadable database available at 
https://github.com/tydickinson29/PRES2iPpy/tree/master/pres2ippy/databases

http://pres2ip.com/extreme-event-tables
https://github.com/tydickinson29/PRES2iPpy/tree/master/pres2ippy/databases


Data
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• ECMWF ERA-5 reanalysis (Hersbach et al. 
2020); daily data on 1.5° lat/lon grid.
ØStandardize via 1981-2010 climatology.

• Predictors (7-day centered running mean):
ØGeopotential height

§ Averaged in [850, 300] hPa column
ØPrecipitable water
ØZonal, meridional wind components

§ Averaged in [850, 300] hPa column
ØSea-level pressure

• Predictand: 1 if day in extreme event, 0 
otherwise.
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Workflow
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• Domain: [20°, 80°] N; [160°, 310°] E
• RF hyperparameters held constant:

ØGini impurity criterion
ØNumber of considered predictors at 

each split: square root of total predictors
ØLabel weight: inversely proportional to 

frequency

• Optimized RF hyperparameters:
ØNumber of trees: [100, 1000]
ØMinimum samples to split leaf: [1, 4, 

16, 32, 64, 128, 256, 500]
Ø10-fold cross validation

Forecast
Yes No

Observed
Yes A B
No C D

𝐶𝑆𝐼 =
𝐴

𝐴 + 𝐵 + 𝐶



Optimized Models and Accuracies
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Region Trees Split Leaf Samples Training CSI Testing CSI

Southern Plains 1000 256 0.475 0.0924

Ohio River Valley 100 64 0.819 0.0408

Forecast

Yes No

Observed
Yes 270 1

No 297 18030

Forecast

Yes No

Observed
Yes 22 50

No 166 6680

Forecast
Yes No

Observed
Yes 322 1

No 70 18205

Southern Plains Ohio River Valley

Training

Testing

Forecast
Yes No

Observed
Yes 8 167

No 21 6722



Optimized Models and Accuracies
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• Models struggle to match 
forecast probability to true 
probability
ØSource of error differs for 

two regions



Gini Impurity Importance

11

• Importance of predictors 
calculated via their 
effectiveness in splitting 
samples higher in tree.
• Lag 0 geopotential height, 

zonal wind component most 
important.



Geopotential Height Importance
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Southern Plains

Ohio River Valley

Gini Importance

Less Important

More Important



Zonal Wind Importance

13

Southern Plains

Ohio River Valley

Less Important

More Important

Gini Importance



Conclusions and Future Work
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• Developed RFs currently have minimal skill in differentiating 14-day 
event and non-event days.
• Geopotential height, zonal wind component most important in both 

regions (e.g., Jennrich et al. 2020).
ØContinue physical analysis to choose lags that will be most predictive.

• Future experiments:
oUse detrended anomalies.
oAdd further predictors, e.g., omega.
oEmploy PCA to reduce dimensionality, further increase signal-to-noise ratio.
oWeight days adjacent to event.

• Other PRES2iP presentations: Melanie Schroers, Olivia VanBuskirk, 
and Devin McAfee.
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Meridional Wind Importance
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Southern Plains
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Less Important

More Important
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Precipitable Water Importance
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Southern Plains

Ohio River Valley

Less Important

More Important

Gini Importance



Sea-Level Pressure Importance
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Southern Plains

Ohio River Valley

Less Important

More Important

Gini Importance



Geopotential Height Lag 7 Importance
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Southern Plains

Ohio River Valley

Less Important

More Important

Gini Importance



Geopotential Height Lag 14 Importance
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Southern Plains

Ohio River Valley

Less Important

More Important

Gini Importance


