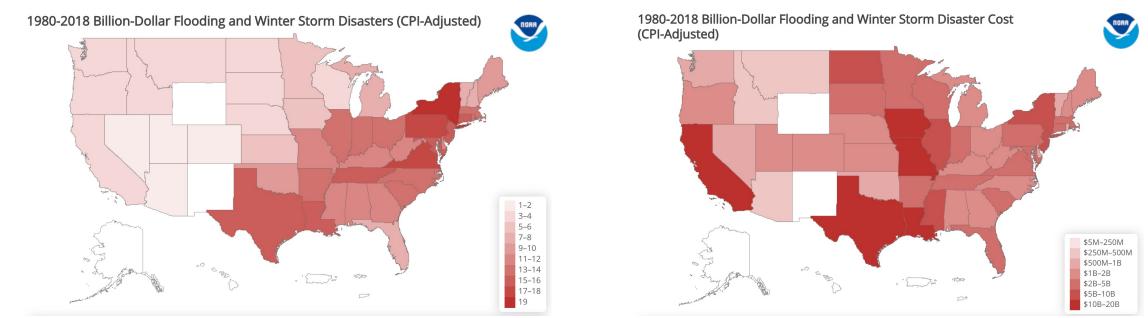


Examining the Utility of Random Forests to Forecast Subseasonal Extreme Precipitation in the Contiguous United States

> Ty A. Dickinson, Jason C. Furtado, Michael B. Richman 46th Annual Climate Diagnostics and Prediction Workshop October 26, 2021

Motivation

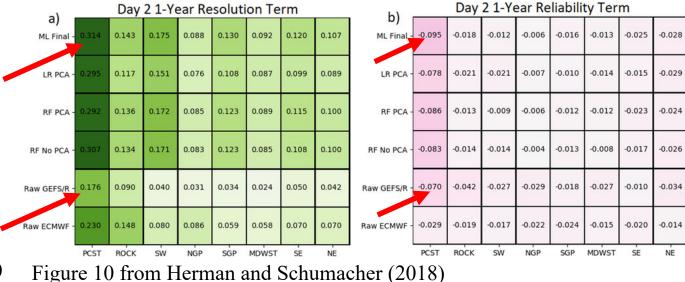
- Extreme precipitation affects nearly the entire CONUS.
- Stakeholders in water resources, agriculture, energy, and emergency managers and tribal leaders all are impacted.

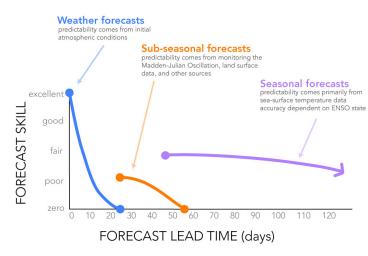


Credit: National Center for Environmental Information

Motivation

- Forecasting extreme precipitation is exceptionally difficult!
 - Statistical methods can help improve forecasts (e.g., Herman and Schumacher 2018).
- Barlow et al. (2019) review paper details extreme events with duration up to 1 week.
- <u>What about extreme precipitation</u> events on longer timescales?
 - Subseasonal forecasts currently lack skill.
 - Can we make improvements to subseasonal extreme precipitation forecasting?





Adapted from the International Research Institute for Climate and Society

The PRES²iP Team

- <u>Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods</u>
- Goals of the project:
 - 1. Define databases of S2S extreme events.
 - 2. Quantify statistical and dynamical links between S2S extreme events and synoptic-scale and global scale precursors.
 - 3. Improve capability to predict S2S extreme events.
 - 4. Increase communication between research scientists and stakeholder communities.

Research Questions

- 1. How well can a random forest (RF) classify days as being extreme or not extreme within the Central Plains and Ohio River Valley?
- 2. Which atmospheric variables are most important in classifying extreme versus non-extreme days and where is their importance maximized?

Overview of the Database

- Events in the database (Dickinson et al. 2021) are **large-scale**, **longer-duration extreme** events.
 - ➢ Exceed 99th percentile, more than 7 days of above normal daily precipitation, have areal extent ≥ 200,000 km².

> *k*-means clustering on events to get "regions"

- Timeframe: 1950 2018
 - Training data: 15 Jan 1950 28 Dec 2000
 Testing data: 15 Jan 2001 28 Dec 2018
- Event independence ensured in database generation.

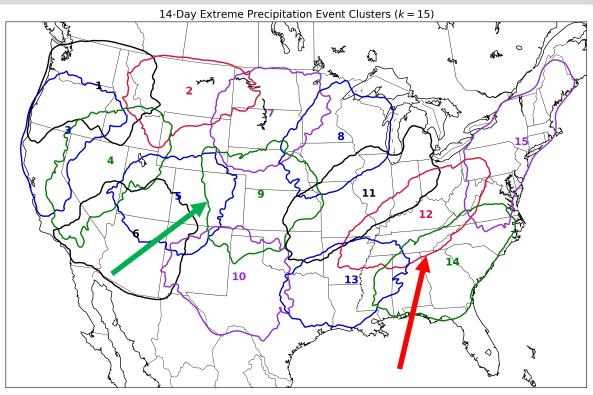


Figure 9 from Dickinson et al. (2021)

Online table of events can be found at http://pres2ip.com/extreme-event-tables

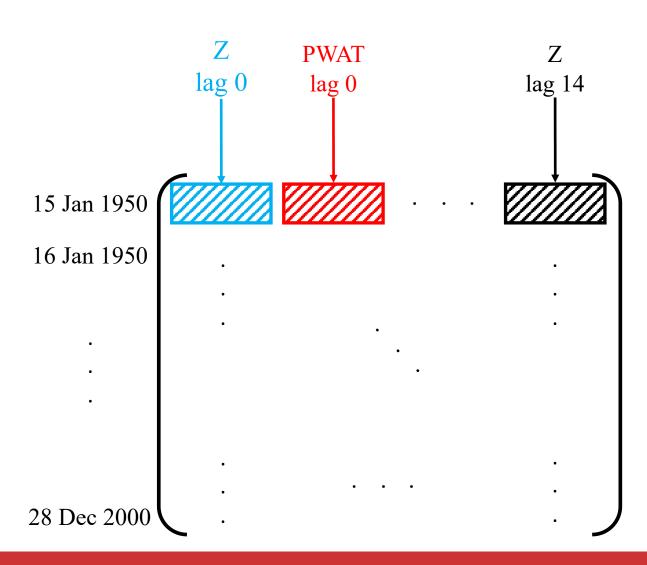
Downloadable database available at https://github.com/tydickinson29/PRES2iPpy/tree/master/pres2ippy/databases

Data

Lags 7,14

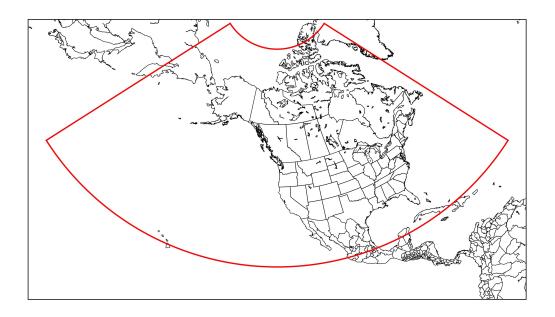
Lag 0

- ECMWF ERA-5 reanalysis (Hersbach et al. 2020); daily data on 1.5° lat/lon grid.
 ➤ Standardize via 1981-2010 climatology.
- Predictors (7-day centered running mean):
 - ➢ Geopotential height
 - Averaged in [850, 300] hPa column
 - Precipitable water
 - ➤ Zonal, meridional wind components
 - Averaged in [850, 300] hPa column
 - Sea-level pressure
- Predictand: 1 if day in extreme event, 0 otherwise.



Workflow

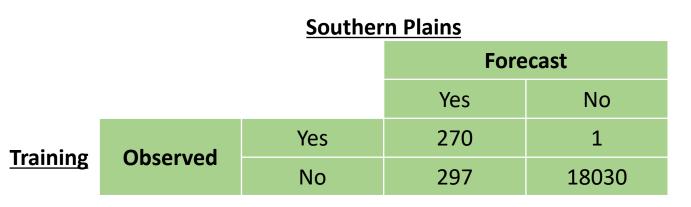
- Domain: [20°, 80°] N; [160°, 310°] E
- RF hyperparameters held constant:
 Gini impurity criterion
 - Number of considered predictors at each split: square root of total predictors
 Label weight: inversely proportional to frequency
- Optimized RF hyperparameters:
 Number of trees: [100, 1000]
 Minimum samples to split leaf: [1, 4, 16, 32, 64, 128, 256, 500]
 - ≻10-fold cross validation



$CSI = \frac{A}{A+B+C}$		Forecast		
		Yes	No	
Observed	Yes	А	В	
	No	С	D	

Optimized Models and Accuracies

Region	Trees	Split Leaf Samples	Training CSI	Testing CSI	
Southern Plains	1000	256	0.475	0.0924	
Ohio River Valley	100	64	0.819	0.0408	



PRES²iP

Ohio River Valley					
		Forecast			
		Yes	No		
Observed	Yes	322	1		
	No	70	18205		

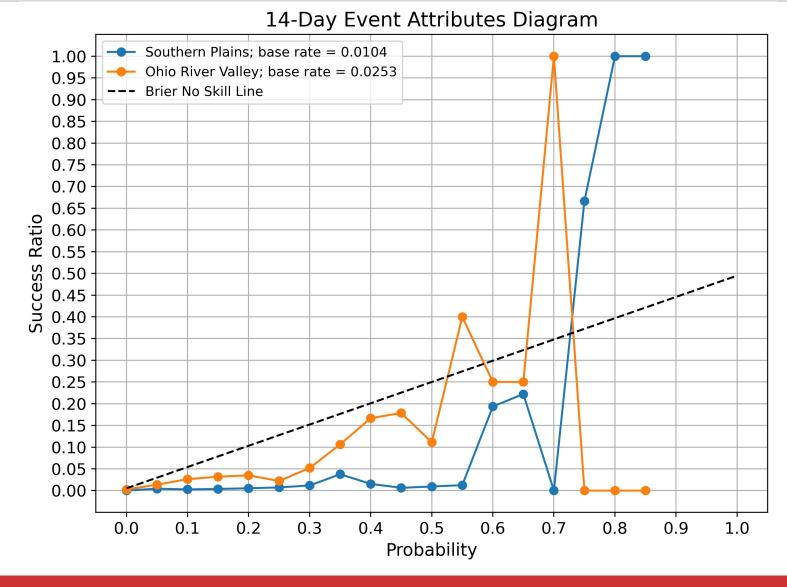
			Forecast					Forecast	
			Yes	No				Yes	No
<u>Testing</u>	Observed	Yes	22	50		Observed	Yes	8	167
		No	166	6680			No	21	6722

Optimized Models and Accuracies

• Models struggle to match forecast probability to true probability

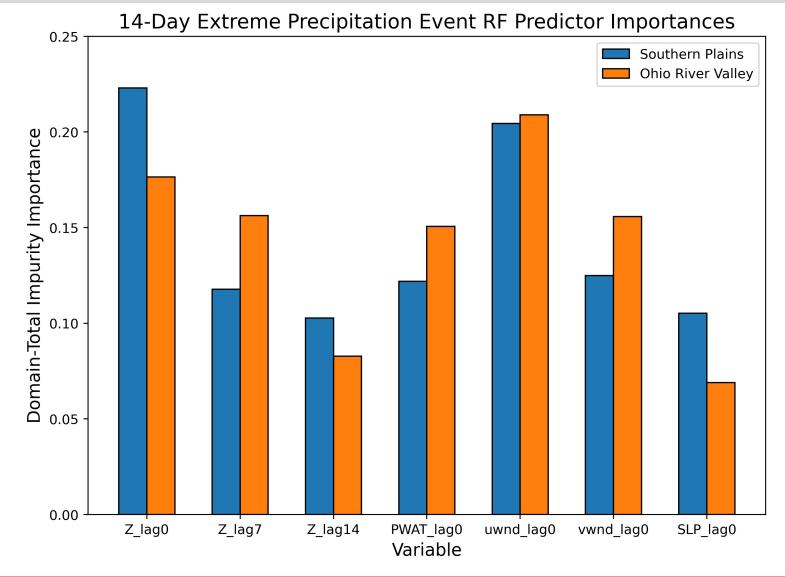
Source of error differs for two regions

PRES²**iP**

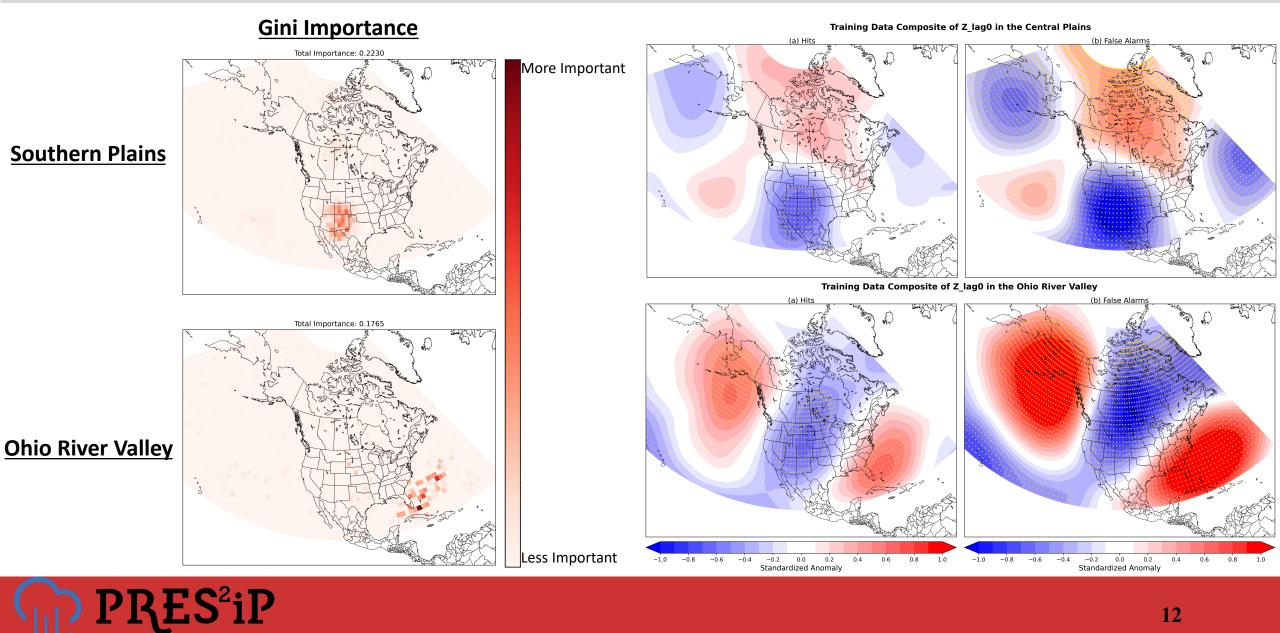


Gini Impurity Importance

- Importance of predictors calculated via their effectiveness in splitting samples higher in tree.
- Lag 0 geopotential height, zonal wind component most important.

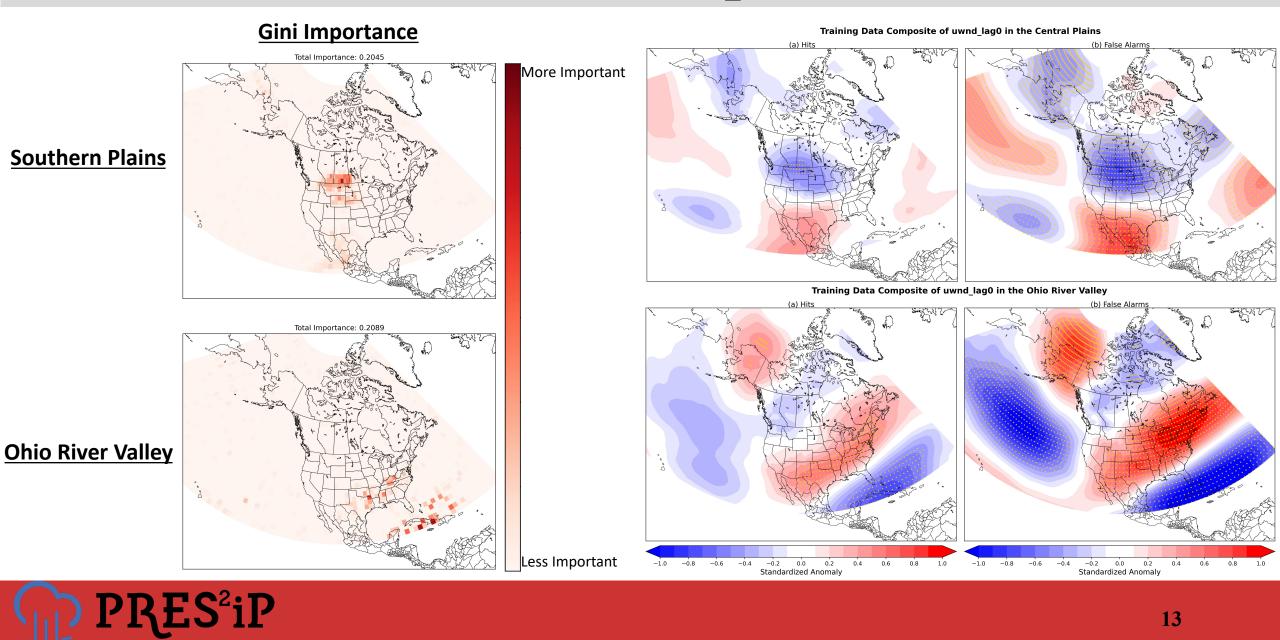


Geopotential Height Importance



12

Zonal Wind Importance



Conclusions and Future Work

- Developed RFs currently have minimal skill in differentiating 14-day event and non-event days.
- Geopotential height, zonal wind component most important in both regions (e.g., Jennrich et al. 2020).

≻Continue physical analysis to choose lags that will be most predictive.

• Future experiments:

 \circ Use <u>detrended</u> anomalies.

 \circ Add further predictors, e.g., omega.

Employ PCA to reduce dimensionality, further increase signal-to-noise ratio.
Weight days adjacent to event.

• Other PRES²iP presentations: Melanie Schroers, Olivia VanBuskirk, and Devin McAfee.

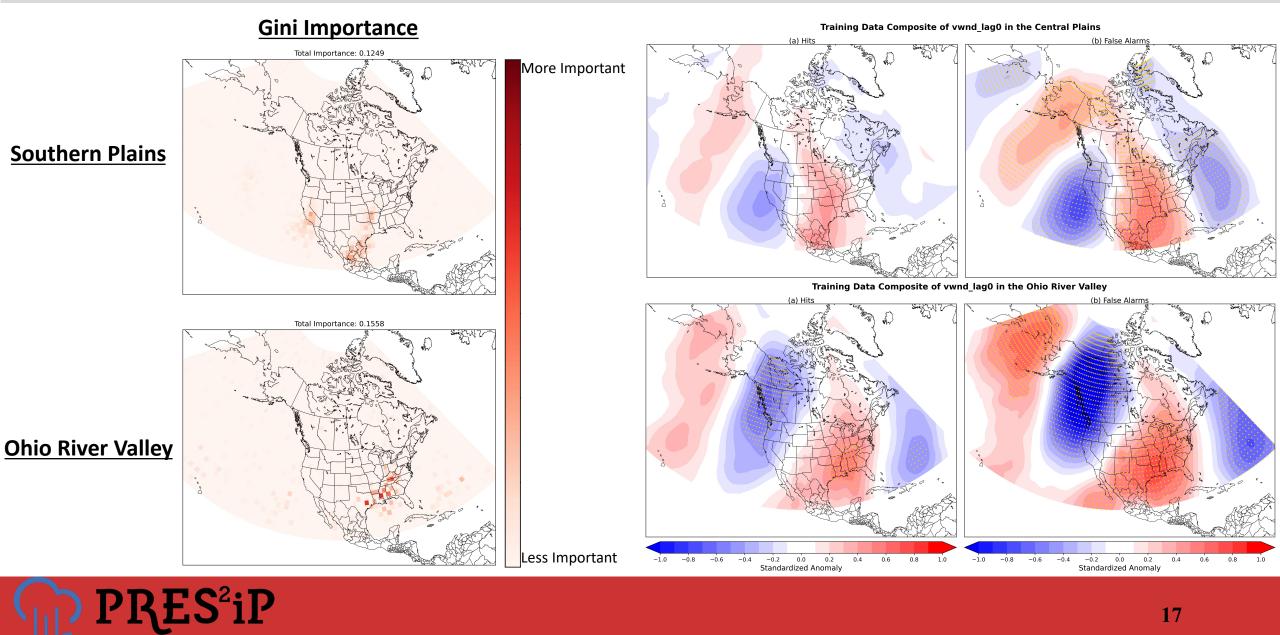
Acknowledgements

- Coauthors: Dr. Jason Furtado and Dr. Michael Richman
- Melanie Schroers and the rest of the amazing PRES²iP team!
- Ollie Millin
- NSF PREEVENTS program, Grant ICER-1663840

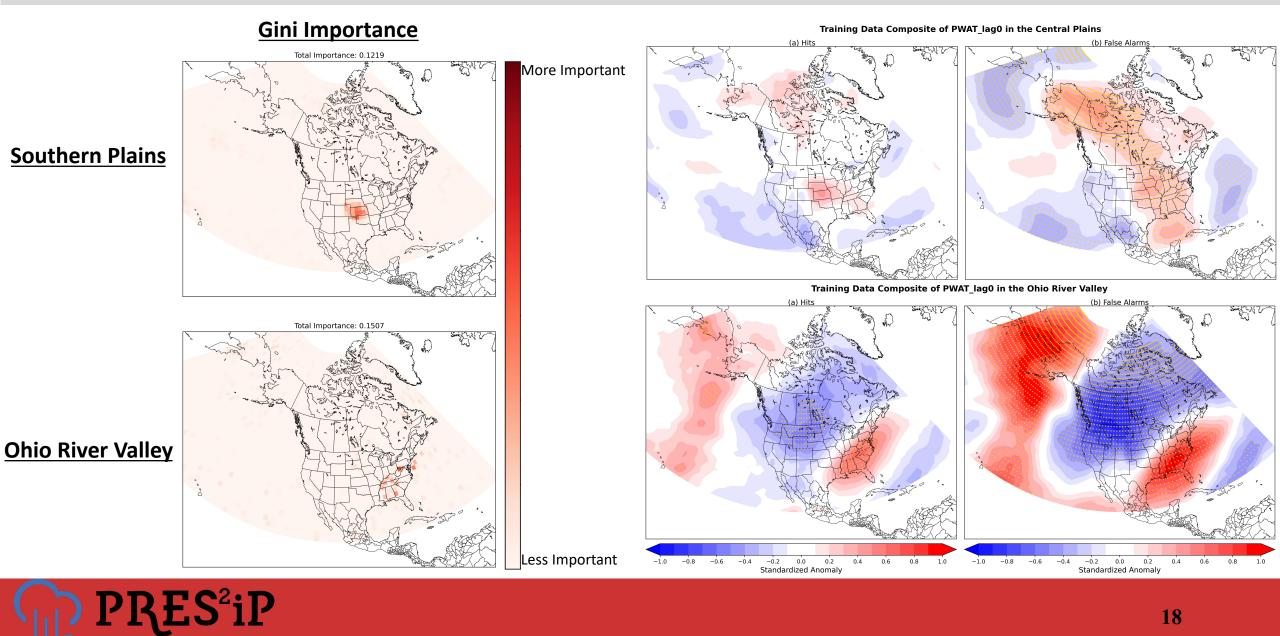
Works Cited

- Barlow, W., and Coauthors, 2019: North American extreme precipitation events and related largescale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. *Climate Dynamics*, doi: 10.1007/s00382-019-04958-z.
- Dickinson, T. D., M. B. Richman, and J. C. Furtado, 2021: Subseasonal to Seasonal Extreme Precipitation Events in the Contiguous United States: Generation of a Database and Climatology. *J. Climate*, **34**, 7571-7586, doi:10.1175/JCLI-D-20-0580.1.
- Herman, G. R., and R. S. Schumacher, 2018: Money Doesn't Grow on Trees, but Forecasts Do: Forecasting Extreme Precipitation with Random Forests. *Mon. Wea. Rev.*, **146**, 1571-1600, doi: 10.1175/MWR-D-17-0250.1.
- Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. *Quart. J. Roy. Meteor. Soc.*, **146**, 1999–2049, doi:10.1002/qj.3803.
- Jennrich, G. C., J. C. Furtado, J. B. Basara, and E. R. Martin, 2020: Synoptic Characteristics of 14-Day Extreme Precipitation Events Across the United States. *J. Climate*, **33**, 6423–6440, doi:10.1175/JCLI-D-19-0563.1.
- Novak, D., K. Brill, M. Eckert, R. Oravec, B. Sullivan, R. Bann, F. Barthold, and M. Bodner, 2011: Quantifying extreme rainfall threats at the Hydrometeorological Prediction Center. *24th Conf. on Weather and Forecasting/20th Conf. on NWP*, Seattle, WA, **Amer. Meteor. Soc., 14A.4.**, [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper179714.html].

Meridional Wind Importance

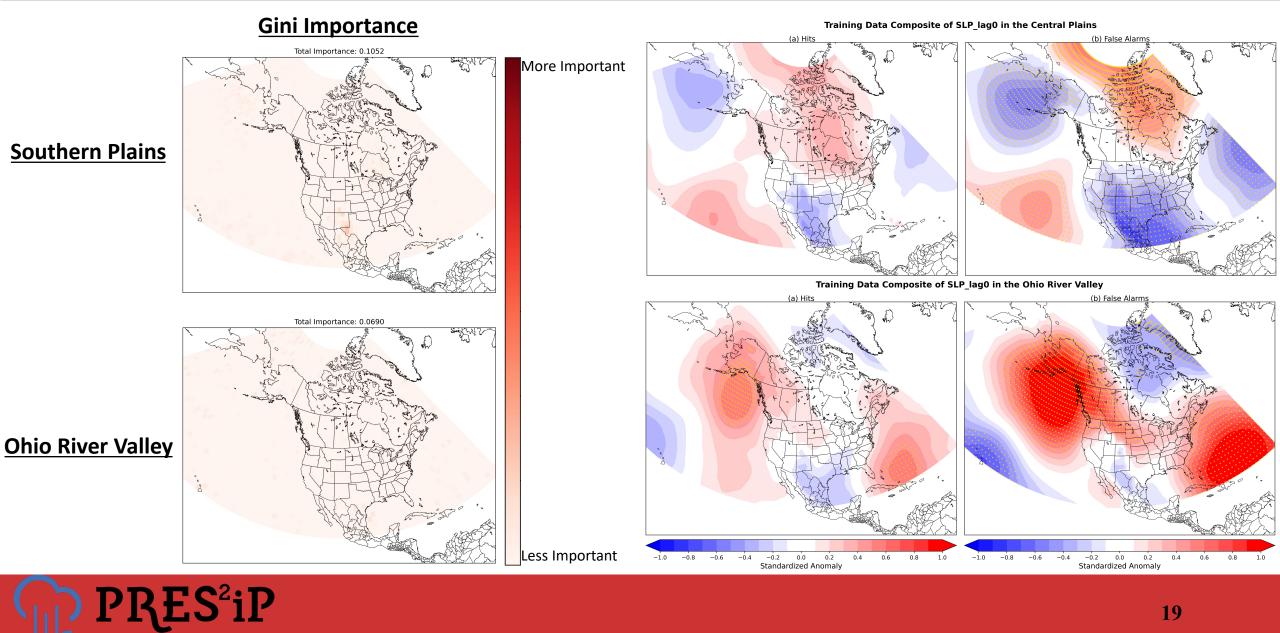


Precipitable Water Importance



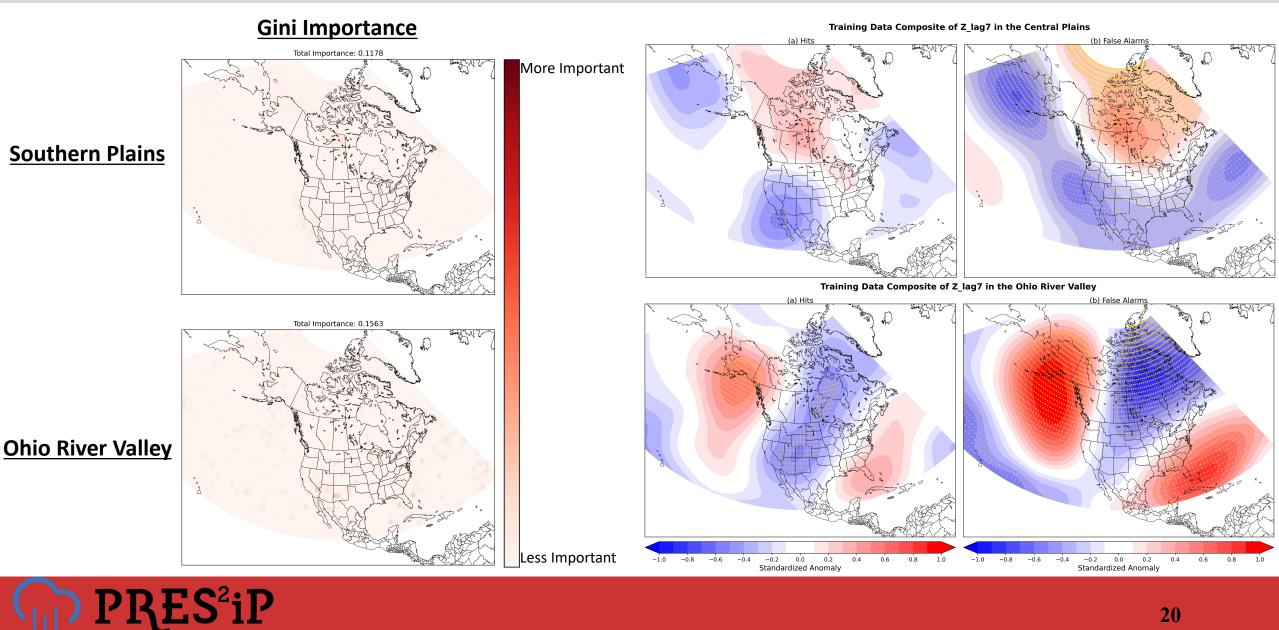
18

Sea-Level Pressure Importance



19

Geopotential Height Lag 7 Importance



Geopotential Height Lag 14 Importance

