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Blocking Definition and Impacts
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During blocking:

* An anomalous ridge exists to the north and an anomalous trough to its
south.

* This results in a reversal of the climatological westerlies to easterlies.

* This reversal blocks the jet stream, forcing large-scale stationary waves
and a diversion of the storm track.

* This pattern resembles the negative phase of the North Atlantic
Oscillation (NAO).

Examples of impacts:

Extensive drought in the West (Wise 2016)

Divert atmospheric rivers into Alaska (Baggett et al. 2015)

Extreme cold conditions (Wang et al. 2010; Marinaro et al. 2015)
Sudden stratospheric warmings (Martius et al. 2009; Butler et al. 2017)

Because blocks can persist for weeks, knowledge of blocking episodes and
their surface impacts can perhaps lead to enhanced predictive skill of Week
3-4 temperature and precipitation across the United States.




Blocking Frequency & Indices @
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Week 3-4 Statistical Models

Schematic of the Week 3-4 Statistical Models

Original-Multiple Linear Regression Model (original-MLR)
versus

Merged-Multiple Linear Regression Model (merged-MLR)



Original-MLR Schematic
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Training Period: 1981-2010
Verification Period: 201 1-2019
Region of Interest: CONUS/AK

Predictand: categorical above or below
normal temperature forecasts

Verification Frequency: forecast
initializations every Thursday (to match
extended-GEFSv|2 reforecast frequency)

Original-MLR:

Predictors:

* Days -2 to -15 ENSO3.4
* Day -1 RMMI

* Day -1 RMM2,and

* Day +0 trend




Merged-MLR Schematic
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Training Period: 1981-2010
Verification Period: 201 1-2019
Region of Interest: CONUS/AK

Predictand: categorical above or below
normal temperature forecasts

Verification Frequency: forecast
initializations every Thursday (to match
extended-GEFSv12 reforecast frequency)

Merged-MLR:

Predictors:

» same as Original-MLR, plus

* GEFS Day +14 NAO for CONUS (variance
corrected)

* GEFS Day +12 PNA for AK (variance
corrected)




Heidke Skill Scores of the MLRs

Heidke Skill Scores (HSSs)

original-MLR
versus

MLR-NAO, MLR-PNA, and merged-MLR




Original-MLR versus MLR-NAO
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Temperature

original-MLR versus MLR-NAO during NDJFMA (2011-2019)
during All Forecast Initializations

original-MLR MLR-NAO
es—*-i\\:} f*'“i:ﬁ wmg%iz§% z‘%ﬁ%‘“‘a af—*-f;? )ﬁ-:l ngﬂgfﬁ%%}jﬂi Difference in Week 3-4 TEMPERATURE skill scores
S “%@ﬁx > ZE £ "\ni s Zv o G
e R e u e + original-MLR versus MLR-NAO
HSS = 12.7 :-._!'. i;!f—-:-(}%‘# r HSS = 14.9 . Predictor: GEFS Day + 14 NAG
CONUS HSS =11.5 -ir‘g.h;‘."i%‘-?gi- CONUS HSS = 15.3 redictor: ay
AK :?82:419'2 Aoy ;@l'ﬁ‘i‘) AK :§82;412.7 * Verification Period:2011-2019, Thursdays

36 24 -12 0 12 24 36 -36 24 -12 0

f—*"‘ = B
L= e S S 7%;?“2
P = 5 S

"AHSS =22
ACONUS HSS = 3.9
AAK HSS = -6.6

n=224 | \

Predictor: corrected-GEFS Day +14 NAO (CPC)

Additional Conditions: during November-April only

* Key Points:

Overall, skill scores improve by ~17%.
Generally, the MLR-NAO offers improvements
over CONUS and makes things worse over AK.
Skill scores over CONUS improve by ~33%.




Original-MLR versus MLR-PNA

Temperature

original-MLR versus MLR-PNA during NDJFMA (2011-2019)
during All Forecast Initializations
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Predictor: corrected-GEFS Day +12 PNA (CPC)

Difference in Week 3-4 TEMPERATURE skill scores

* original-MLR versus MLR-PNA

* Predictor: GEFS Day +12 PNA

* Verification Period: 201 1-2019, Thursdays

* Additional Conditions: during November-April only

* Key Points:
*  Overall skill scores decrease by ~16%.
* However, the MLR-PNA offers improvements
over Alaska where skill scores increase by 38%.




Original-MLR versus merged-MLR

© ATMOSp,,

%
k2
2
3
£y

Temperature

original-MLR versus merged-MLR during NDJFMA (2011-2019)

during All Forecast Initializations
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Difference in Week 3-4 TEMPERATURE skill scores

original-MLR versus merged-MLR

Predictor: GEFS Day +14 NAO & GEFS Day +12 PNA
Verification Period: 201 1-2019, Thursdays
Additional Conditions: during November-April only

Key Points:

*  Overall skill scores improve by ~35% over
CONUS/AK
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Seasonal Skill Score Improvement of the MLR-NAO Seasonal Skill Score Improvement of the MLR-PNA
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* A large suite of MLR-NAO and MLR-PNA models were tested to determine the lead time at which a
predictor from the GEFS adds the most value over the original-MLR.

* One could justify using ~Day +12 to +15 values for either predictor, but perhaps the lead day should be a
function of season.




Why Day +14 NAO and Day +12 PNA!?
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* Both the NAO and PNA are predicted well by the GEFS (correlations exceeding 0.5) out to ~Day +14
* The skill is seasonal, with the highest correlations seen during winter.
* This partly explains why the merged-MLR does not do as well during summer as it does during winter.
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Comparison to the GEFSv |2

HSSs compared to the GEFSv 12

All Initializations
versus

Amplified NAO Initializations
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Merged-MLR versus GEFSv|2

GEFSv12

Temperature

merged-MLR versus GEFSv12 during NDJFMA (2011-2019)

during All Forecast Initializations

merged-MLR

Difference in Week 3-4 TEMPERATURE skill scores
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* merged-MLR versus GEFSvi2

* Predictor: GEFS Day +14 NAO & GEFS Day +12 PNA
* Verification Period: 201 1-2019, Thursdays

* Additional Conditions: during November-April only

* Key Points:
e The GEFSv|2 outperforms the merged-MLR by
59%.
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Merged-MLR versus GEFSv |2
during Amplified NAO Conditions

Temperature

merged-MLR versus GEFSv12 during NDJFMA (2011-2019)

During Forecast Initializations when |Day +0 NAO| = 0.85
GEFSv12 merged-MLR
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* Additional Conditions: during November-April only,
when the NAO is amplified on Day 0

* Key Points:

* The merged-MLR performs as well as the
GEFSv12 during these Forecasts of
Opportunity (Mariotti et al. 2020)

* The statistical model outperforms the GEFS over
northern AK and central CONUS.

* The merged-MLR scores ~32% higher when the
NAQO is amplified on Day 0 compared to all
forecast initializations.

ACONUS HSS =-0.5
AAK HSS = 2.2

n=83
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Moving forward...

Moving forward...

Experimental Real-Time Merged-MLR,
and

Conclusions
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Experimental Real-Time Merged-MLR

Week 84 Blocking

* Currently, the NAO is negative and is forecasted to stay negative at
(maintained by Cory Baggett, cory.baggett@noaa.gov)

Day +14 by the GEFSv|2.

* This is considered a “forecast of opportunity” because the NAO is
relatively strong right now.

Documentation - Week 2 Z500 Autoblend - Week 3-4 Subsampling - Week 3-4 Blocking

Week 3-4 Forecasts: Original-MIR - MLR-NAO - MIL.R-PNA - Merged-MLR - Verification

Temperature: Week 3-4 merged-MLR Anomaly * The PNA is forecasted to be neutral.

Valid Dates: 09Nov2021 to 22Nov2021 °

The trend contribution damps the cold signal in the East considerably.

* ENSO is damping the very warm trend contribution in Alaska.
* The MJO contribution (not shown) is weak.

e  Time will tell.
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Temperature: Week 3-4 merged-MLR Anomaly Temp Temperature: Week 3-4 merged-MLR Anomaly
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Conclusions

* By using blocking-related predictors, such as the NAO and PNA, we can improve our Week 3-4 statistical
models.

* Further, by hybridizing the statistical models with indices forecasted by the dynamical models, we gain the
most improvement.

* Finally, this improvement largely occurs during so-called “forecasts of opportunity” when the relative indices
are amplified. In such instances, the statistical model performs on-par with the GEFSv|2.

* Unfortunately, positive results for precipitation have been elusive, but a few more tests are ongoing.

* Moving forward, we will be experimentally monitoring the merged-MLR’s performance in real-time, with the
particular hope that it can provide insight into upcoming episodes of cold during winter.

Thank you! Questions?
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MLR-NAO Regression Coefficients

The Power of Innovation

Temperature (DJF; 1981-2010)

ENSO 3.4
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* Trend remains constant with lead-time.
* MJO and ENSO signals are large across all leads ands persist out to Week 3-4.
* The large NAO signal over CONUS fades significantly by Week 3-4.
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Precipitation HSSs

Precipitation HSS (All Initializations)

Region GEFSv12 | original-MLR | MLR-NAO | MLR-PNA | merged-MLR
CONUS & AK 6.9 3.6 2.6 2.6 2.4
CONUS 6.5 2.4 1.4 1.6 1.4
AK 9.1 10.2 9.2 8.0 8.0

* Further ideas are being tested.

* Unfortunately, precipitation skill scores are still low.

* Generally,the GEFSvI2 outperforms the statistical models, but scores are close in Alaska.
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* During winter, the GEFSv |2 forecasts the NAO at extended leads better when the Day +0 NAO is amplified.
* This is not the case during summer.

* This can at least partly explain why the merged-MLR performs well during November-April when the Day +0 NAO is
amplified.

* Feng et al. (2021) found that most dynamical models predict the NAO better at extended leads when the NAO is
amplified at model initialization.
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