Finding maximum predictable patterns in a S2S model over summer East Asia By

Chueh-Hsin (Shing) Chang, Nathaniel C Johnson, Baoqiang Xiang, Pang-Chi Hsu, Changhyun Yoo, Li-huan Hsu, Jung-Lien Chu and Chung-Wei Lee

National Taiwan University, Taiwan NOAA GFDL, USA NUIST, China Ewha Womans University, South Korea National Center for Disaster Reduction, Taiwan

- > Using APT finding maximum predictable patterns
 - Region of interest
 - Forecast time of interest
- > Exploring four S2S models: CNRM, ECMF, CFSv2, JMA
- > Reforecasts (hindcasts) up to 45 days

	ECMWF	JMA	CNRM	CFSv2
Ensemble members	10	10	9	3
Ocean coupling	√	X	√	\

(Vitar et al 2017) BAMS)

APT (1) Average Predictability Time

Standard measure of predictability

$$P(\tau) = \frac{\sigma_{\infty}^2 - \sigma_{\tau}^2}{\sigma_{\infty}^2}$$

- σ_{∞}^2 climatological variance; ensemble spread of long-term mean
- σ_{τ}^2 ensemble forecast spread at lead time τ

$P(\tau)$ varies from nearly **1** to **0** as τ increases and $\sigma_{\tau}^2 = \sigma_{\infty}^2$

- When the forecast spread equals the climatological spread
- In other words, a forecast is no better than a random guess from the climatologies.

(Jia et al 2015 Jclim; Delsole & Tippett 2009 JAS)

APT (2) Average Predictability Time

Define APT

- √ Characteristic timescale of a (climate) system
 - When a system has strong damping, it has shorter memory and hence less predictable
- ✓ Independent of forecast lead times
 - average/integrate over all lead times
- √ Consistent with the common e-folding (half life) timescale
 - multiply by 2

APT=:
$$2\sum_{\tau=1}^{\infty} \frac{\sigma_{\infty}^2 - \sigma_{\tau}^2}{\sigma_{\infty}^2}$$

(Jia et al 2011 Jclim; Delsole & Tippett 2009 JAS)

Maximize APT (3) Eigenvalue Problem

- Maximizing APT
 - A system described by linear stochastic dynamics

$$\frac{dW^{obs}}{dt} = \mathbf{A}W^{obs} + \mathbf{F}\xi$$

 \boldsymbol{W} : state vector

A : dynamics matrix

F: forcing matrix

ξ : white noise

- Lower and upper bounds for predictability of such a system
- Maximizing APT leads to a generalized eigenvalue problem;

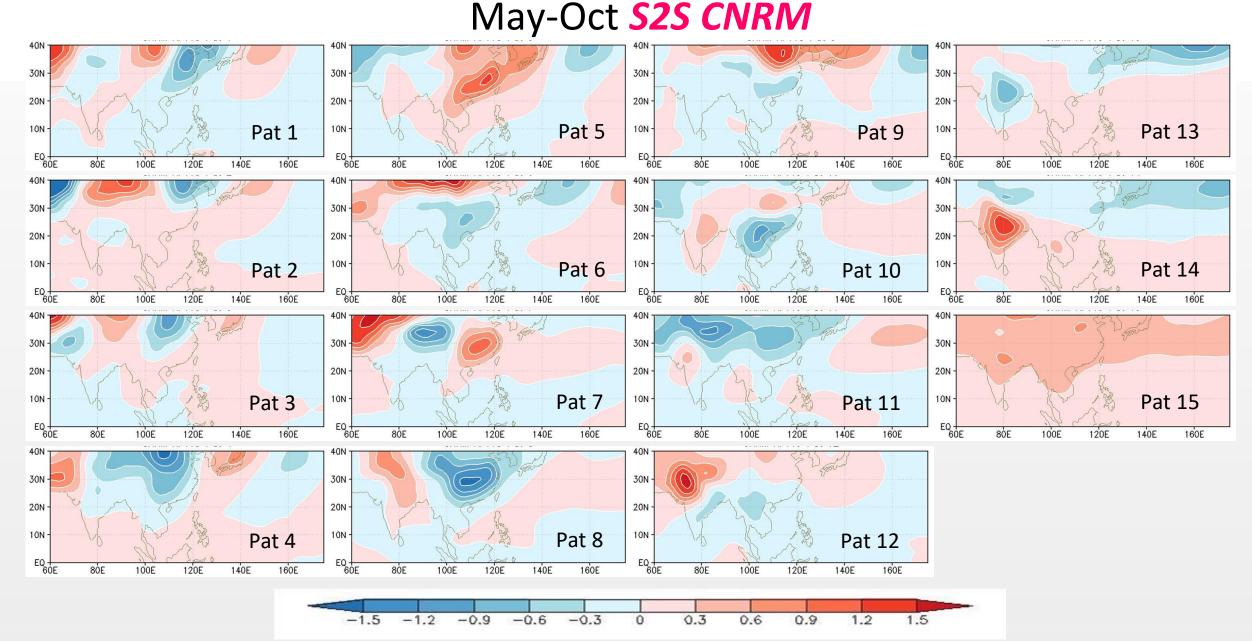
$$\sigma_{\tau}^2 = \boldsymbol{q}^T \Sigma_{\tau} \boldsymbol{q}; \quad \sigma_{\infty}^2 = \boldsymbol{q}^T \Sigma_{\infty} \boldsymbol{q}$$

$$2\sum_{\tau=1}^{\infty}(\Sigma_{\infty}-\Sigma_{\tau})\boldsymbol{q}=\boxed{2}\Sigma_{\infty}\boldsymbol{q}$$

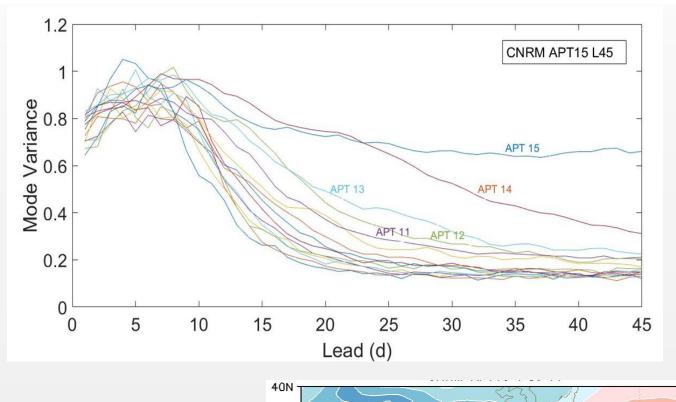
q: projection vector
 such that q^TW
 maximizes APT

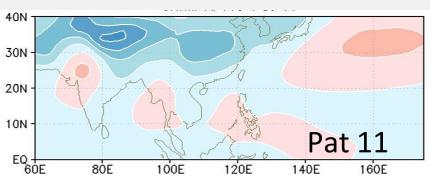
(Tippett & Chang 2003 Tellus; Jia et al 2011 Jclim)

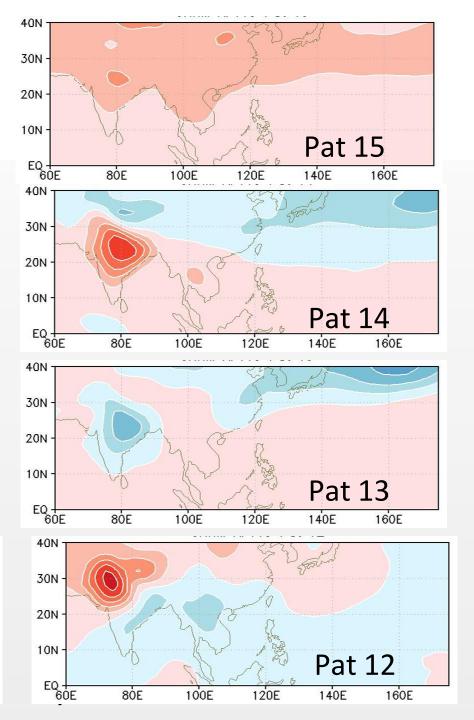
Maximum Predictable Modes Indo Pacific T2m



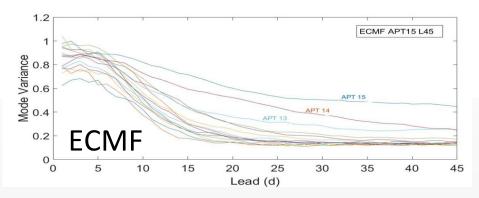
Persistent Signals APT15 Lead = 45 *S2S CNRM*

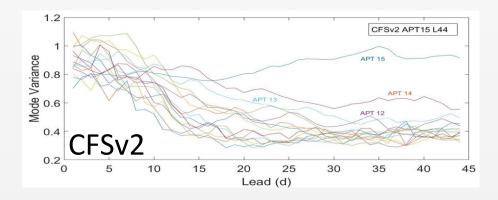


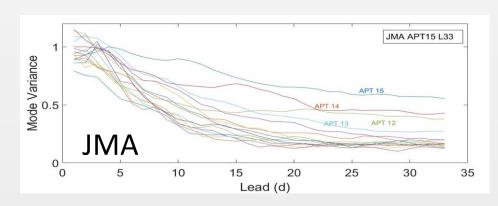


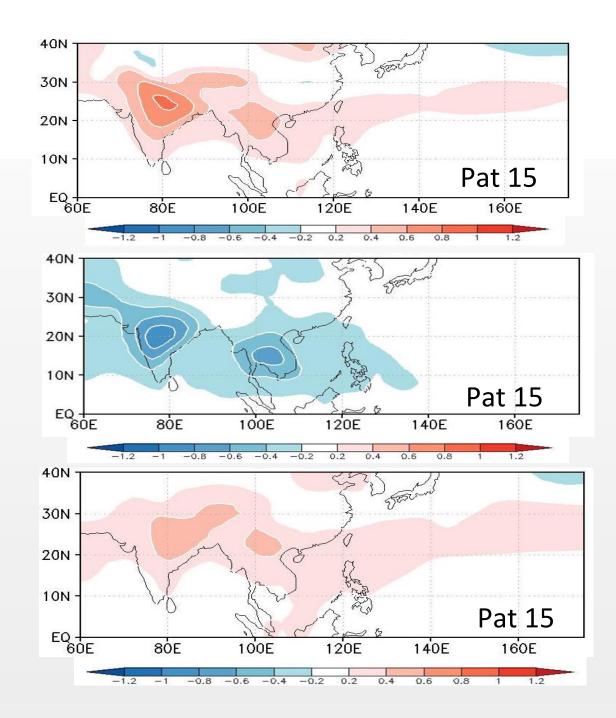


Persistent Signals APT15

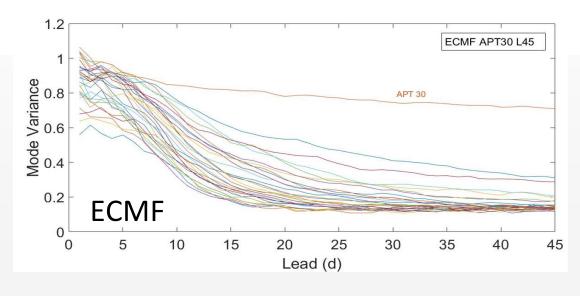


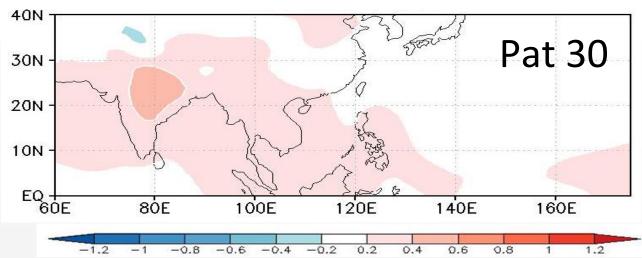


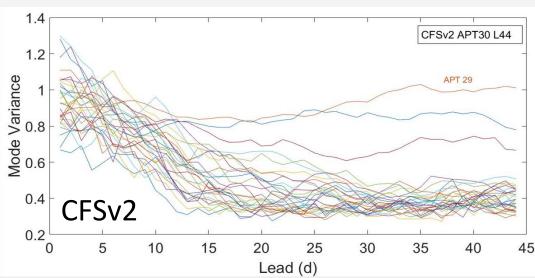


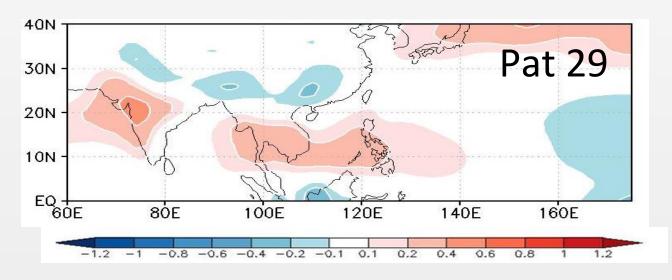


Persistent Signals APT30



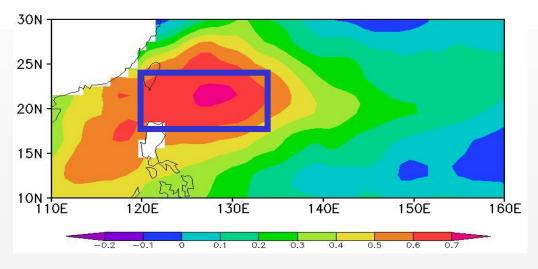


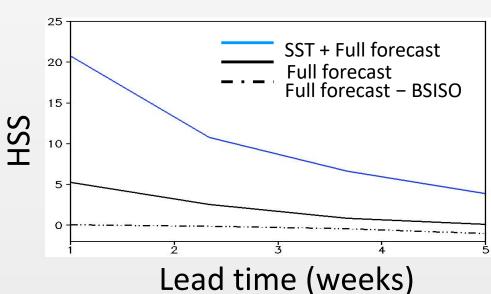


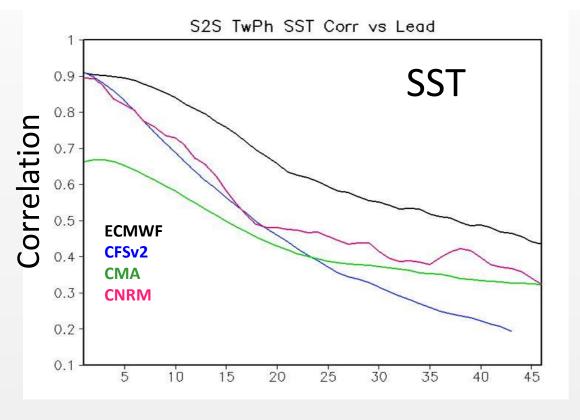


Reconstruction of Subseasonal Index

Tw-Ph SST Index







Lead time (days)