Evaluation of a SubX Multimodel Ensemble to

 predict an intraseasonal index for South America based on Outgoing Long Wave Radiation

CIMA - UBA/CONICET
Background: the Seasonal-IntraSeasonal (SIS) pattern is the leading EOF of the 10-90-day filtered OLR anomalies in eastern South America. In the extended austral summer it is a dipole, and its activity shows the organization of regional and hemispheric anomalies.

R2O: adapting the SIS index from research to operations
R: SIS index = PC1 of 10-90 days filtered OLR
O: 1) Compute OLR anomalies, 2) remove the mean of the last 40 days, 3) apply two consecutive 5 -point running mean, 4) project onto the SIS pattern -> SIS index

SubX Multimodel ensemble (MME): obtained by averaging all available initializations between Saturdays and Fridays. Hindcasts are used simulating real-time conditions. ECCC, EMC, ESRL, GMAO, NRL and RSMAS models.

SIS index forecast: for each model and MME, SubX daily OLR anomalies respect lead-dependent climatology are joined with low-frequency-filtered observed OLR anomalies, then smoothed and projected onto the SIS pattern.

Correlation between observed \& MME-SubX SIS index drops below 0.5 and after 10 days.

SubX multimodel

ensamble shows promising

results for predicting an

intraseasonal index for

South America

Discrimination of SubX-MME SIS index for SIS>0.75 days decreases sharply by week.

Weekly OLR' analysis shows that SACZ is the main source of predictability up to week 2.

For each summer season, SACZ shows higher ACC than SESA region for weeks $1 \& 2$.

MME larger amplitude errors in the SACZ and larger bias between SIS action centers.

Acknowledgements: SubX project, IRI Data Library, CPDW CONICET/UBA, Elio Campitelli \& metR R-package

