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North American Multi-Model Ensemble (NMME)

hindcasts and forecasts of temperature and
precipitation are post-processed using the
Calibration, Bridging, and Merging (CBaM)
methodology at the Climate Prediction Center
(CPC) to improve skill and reliability over raw
dynamical model forecasts.
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Fig. 1: Temperature and precipitation trends in June-August (JJA) for
observations (top) and Raw NMME lead 1 hindcasts (bottom)
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However, dynamical models often incorrectly
represent decadal trends (Fig. 1), potentially
reducing skill and impacting calibrated probabilities
in regions and seasons with strong trend. A trend
parameter is added to Bayesian Joint Probability
(BJP) calibration, BJP+T, that correlates with
observed trend in order to correct dynamical model
decadal trends.
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Summer seasons are more impacted by
temperature trends (see Fig. 1(a), western US and
AK). We expect that JJA forecasts will be improved

more by the addition of explicit trend. We find
increased temperature skill over regions with large
trend when comparing BJP+T to BJP in individual
models (Fig. 2 left). Reliability of MME probability is
increased in some cases, e.g. below normal
precipitation (Fig. 2 right).
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Fig. 2: BJP+T - BJP upper and lower tercile average t2m Brier
Skill Score for CFSv2 (lead 1, JJA) (left) and NMME BJP+T and
BJP lower tercile prate reliability (right)

Though calibrated skill increases when adding
explicit trend, most of the benefit of CBaM is from
merging calibration with bridging through Bayesian
Model Averaging (BMA). Results are modest, but
positive for merged t2m or prate (Fig. 3).
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Fig. 3: BJP+T - BJP upper and lower tercile average t2m Brier Skill
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Extreme skKill results are mixed. Temperature does
not show as large of an increase from addition of
trend. Precipitation shows the largest increase in
the winter months (Dec-Feb, DJF). This likely is
due to stronger precipitation trend in DJF (Fig. 4).
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Fig. 4: DJF observed prate trend (left); 1 month lead BJP+T - BJP
BSS difference for 80th and 20th prate percentiles for DJF (right)

However, MME and individual model (e.g., CFSv2)
precipitation probability reliability is increased by
addition of explicit trend, particularly for extremes

falling into the 80th percentile (Fig. 5).
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Fig. 5: Reliability of CFSv2 (left) and NMME BJP+T and BJP

@core for NMME (lead 1, JJA) (left) and prate (right) Y,

\80th percentile precipitation (right) for lead 1 DJF
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Supplemental Material 1: Example of raw model temperature trends (initialized June, lead 1, predicting July-Sept)
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Supplemental Material 1: Example of BJP calibrated temperature trends (initialized June, lead 1, predicting July-Sept)
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