PREDICTABILITY AND SKILL OF AN OPERATIONAL EMPIRICAL-DYNAMICAL MODEL FOR WEEKS 3-4 NORTHERN HEMISPHERE FORECASTS

Empirical model of dynamics: Linear Inverse Model (LIM)

- If nonlinearities are mostly *fast* then on slower seasonal time scales, they are essentially *unpredictable*.
- Some portion of these fast nonlinearities can be linearly parameterized to retrieve their *slow* aggregate effect.
- Empirical model for climate anomaly *evolution* with linear stochastically forced dynamics:

$$\frac{d\mathbf{x}}{dt} = \mathbf{L}\mathbf{x} + \mathbf{S}\eta$$

 $\mathbf{x}(t)$ is the state vector at time t,

L is a stable linear operator, combining slow linear processes and linearly parameterizable nonlinearities

 $\mathbf{S}\eta$ is white noise

Multivariate nonnormal linear dynamics

- The linear operator, **L**, is obtained from covariance statistics of the state variables (e.g. AR1).
- Eigenmodes of **L** represent different oscillatory evolutions, with various periods and exponentially decreasing amplitude with time.
- Individual anomalies can grow and evolve through eigenmode constructive / destructive interference.

LIM as a forecast model

- The LIM is a low-order model (prefiltered in EOF space) with O(10) degrees of freedom.
- Test assumption of linearity ("tau-test") model is independent of training lag.
- The LIM is an *infinite gaussian ensemble*
- Forecast (ensemble mean):

$$\mathbf{x}(t+\tau) = \exp(\mathbf{L}\tau)\,\mathbf{x}(t)$$

Categorical forecasts:

Forecast error, ε , is only a function of lead-time

From the error covariance matrix, **E**, we can form the gaussian PDF of the ensemble.

 $\mathbf{E}(\tau) = \langle \varepsilon \varepsilon^{\tau} \rangle = \mathbf{C}(0) - \mathbf{G} \mathbf{C}(0) \mathbf{G}^{\tau}$

Expected skill:

 $\rho_{\infty} = \frac{s}{\sqrt{1+s^2}}$ where $s^2 = \frac{[\mathbf{G} \mathbf{C}(0)\mathbf{G}^{\mathsf{T}}]_{ii}}{[\mathbf{E}(\mathsf{T})]_{ii}}$

Samuel P. Lillo^{1,2}, Matthew Newman^{1,2}, John Albers^{1,2}

1 CIRES, University of Colorado, Boulder; 2 NOAA Physical Science Laboratory

Objectives:

Develop and operationalize a skillful sub-seasonal forecast model based on the statistics of the system. Identify "forecasts of opportunity" using the *expected skill* derived from the model signal-to-noise ratio. Extract the dynamical properties of the system from its observed statistics.

Sub-seasonal forecast models

- Cross-validated operator
 - Variables are weekly-averaged coarse-grained 5-deg resolution, and truncated in EOF space (retaining about 60 – 90% variance) Trained on JRA-55 reanalysis from 1979 – 2017
 - 12 seasonal L operators, each trained on a trimonthly period, with the EOFs truncation done accordingly.

CMWF IFS-CY43

- 11 reforecasts
- Horizontal res: Tco639/319 (16 km until day 16, 32 km beyond) Years available: 1997 - 2016 (2017 model)

NH 500mb and SLP

- All models share same regions of high skill in weeks 3-4, over the North Pacific and central Atlantic.
- LIM offers more skill over Scandinavia than IFS and CFS Using the *expected skill* derived from the LIM, can identify forecasts of opportunity in both the LIM itself as well as the IFS and CFS.

Surface laye Pressure at r Geopotentia

Variable

Tropical heat Tropospheric

Stratospheri

	Domain	PCs
r	North America landmass	5
mean sea level	20°N – 90°N	23
al height	500 hPa; 20°N – 90°N	14
ting	20°S – 20°N	23
c streamfunction	700 hPa; 20°N – 90°N	15
ic geopotential height	10 hPa and 100 hPa; 30°N – 90°N	12

• 4 daily reforecasts x 4-day lagged ensemble (16 mem) • Horizontal res: T126 (~100 km) • Years available: 1999 - 2010

North America T2m

LIM probabilistic forecasts and forecasts of opportunity Infinite ensemble creates robust distribution of magnitude and coverage of T2m probabilities across North America. Higher expected skill = higher probabilities.

Newman et al. (2003)

Same except only when expected anomaly correlation was in the top decile of all forecasts

Samuel P. Lillo sam.lillo@noaa.gov