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Extreme precipitation poses a substantial risk on life and property globally.
Most current literature focuses on precipitation on lasting up to 3 days despite
desire from stakeholders from a myriad of backgrounds (e.g., water resources,
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Objective: Cref_ite a robust and adaptive methodology to identify S25 — — Figure 7: (left; black) Total number of recorded events throughout the CONUS. Quantile regression lines are
extreme precipitation events over the CONUS. ' fit on the (green) 5t percentile, (red) median, and (blue) 95t percentile. P-values for the 5t, 50t and 95t

percentiles are 0.052, 0.0028, and 0.089, respectively, calculated by bootstrapping the counts with 10,000
Iterations. (right) Total number of times each grid point was inside an extreme event polygon between 1915

and 2018.

» How does one define extreme over 14 days or longer? Figure 2: Comparison of the 95t percentile of January precipitation

> Are there preferred patterns for extreme rainfall on S2S timescales? between PRISM (left) and Livneh (right). Amount is given in mm and
Is calculated for 2010 using a quantile regression model.
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is > 200,000 km?. 0.02. (b) Extreme event polygon developed using the 0.0865 contour.




