Estimates of Smoke Aerosols Using Machine Learning and Climate Forecast Information

Sarah Lu* and Chin-An Lin, SUNY-Albany, USA *clu4@albany.edu

Huang-Hsiung Hsu and Hsin-Chien Liang, Academia Sinica, Taiwan

Anton Darmenov and Arlindo da Silva[,] NASA GMAO, Greenbelt, USA

VIIRS from WorldView (left) and GEOS-5 AOD (right) for Sept 16, 2020

Smoke aerosols from wildfire has spread across Pacific Ocean, and affected large areas of North America and beyond

Total Aerosol Optical Thickness

Introduction: Wildfire activities under changing climate

- Wildfire activity is strongly influenced by climate/weather, fuel, ignition agents and human activities.
- Observations and model studies have shown human-induced climate change leads to an increase in areas burned and fire frequency/severity as well as extends wildfire seasons.
- OC/BC emissions in MERRA-2, estimated from satellite fire radiative power (Darmenov and da Silva, 2015)
- Large annual variability and spatial variation among sub-regions

- Objective: investigate future regional trends of fire weather extremes and their associated wildfire emissions.
- Methodology: regress satellite derived biomass burning onto simulated meteorological fields and fire indices.

Dataset:

- 1. Time-slice High Resolution Atmosphere Model (HiRAM): Current climate conditions (2000-2015); Future climate conditions (2086-2100, under the Representative Concentration Pathway (RCP) 8.5 scenario
- 2. Smoke emissions from MERRA-2: Quick Fire Emissions Dataset (QFED) which is compiled from satellite-observed fire radiative power and fire locations
- 3. Fire Weather Index (FWI): The FWI system uses four variables (local noon-time surface temperature, relative humidity (RH), wind speed, and 24-h accumulated rainfall) to calculates daily fuel moisture codes and fire behavior indices.

Projection: warmer, drier, and reduced rainfall

 $\Delta T = \overline{T_{2095-2100}} - \overline{T_{2010-2015}}$

FWI significantly increases over southwestern and central US in the end of 21st century.
Project increased emissions over western states, except for NV semi-desert (for ANN) and Desert SW (MRL)

ANN

	Emission (µg m ⁻ ² hr ⁻¹)	MERRA-2 (2005-2019)	Project (NN-Sigmoid)	Project_NN_Sig MERRA – 2
	Pacific NW	197.00	538.40	2.73
	CA Shrub	128.74	134.66	1.05
	RM Forest	140.39	353.72	2.52
	NV semi-desert	36.68	7.65	0.21
	Desert SW	42.49	63.79	1.50
2	Great Plain	18.61	59.03	3.18

Estimates of Smoke Aerosols Using Machine Learning and Climate Forecast Information

Sarah Lu* and Chin-An Lin, SUNY-Albany, USA *clu4@albany.edu

Huang-Hsiung Hsu and Hsin-Chien Liang, Academia Sinica, Taiwan

Anton Darmenov and Arlindo da Silva[,] NASA GMAO, Greenbelt, USA

Conclusions

- Smoke emissions estimated from satellite are analyzed
 - Large annual variability and regional differences
 - Smoke emissions increase over western states in past 15-year
- Time-slice AGCM is used to project fire activity and emissions
 - FWI significantly increases over southwestern and central US in the end of 21st century.
 - Project increased emissions over western states, except for desert sub-regions