Introduction

Predicting Wildfire Favorable Conditions in California at Subseasonal to **Seasonal Lead Times Using Remote Predictors**

Ciara Dorsay¹, Tom Murphree², Kellen Jones²

¹University of California, Berkeley CA

²Naval Postgraduate School, Monterey CA

NOAA 45th Climate Diagnostics and Prediction Workshop Oct. 20, 2020

Problem: Devastating Wildfires at End of Dry Season in California

85	Number of deaths associated with Camp Fire in November 2018 (Penn et al. 2019)
\$30 billion	Amount of money for wildfire liabilities PG&E expects to pay following Camp Fire (Penn et al. 2019)

Can be human or naturally induced (ex. broken power lines)

Camp Fire: "Butte County Sheriff Kory Honea called it 'the worst-case scenario,' saying it is what officials long feared because there was not enough time to implement an evacuation plan" (Thompson 2018).

Research Questions

What global scale conditions create offshore, fire favorable winds in California?

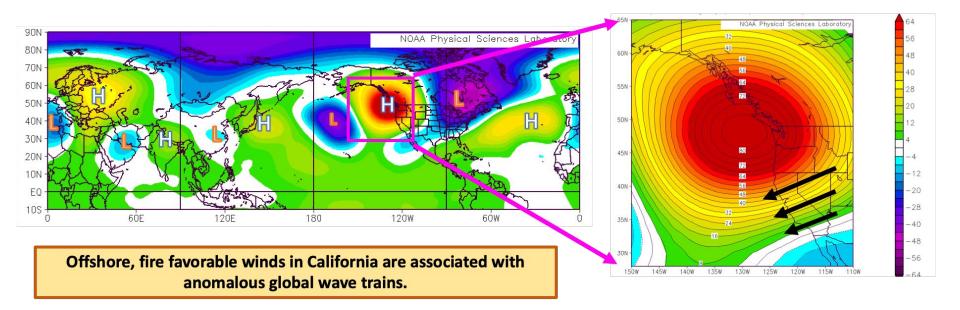
How well can we predict wildfire favorable conditions in California at sub-seasonal to seasonal lead times using remote predictors?

What we found:

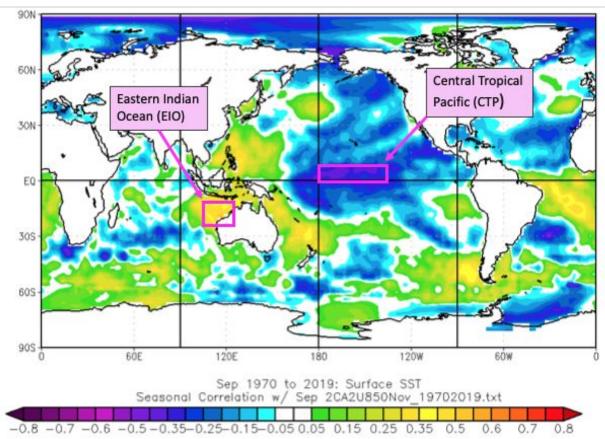
Multiple lines of evidence indicating offshore wind events tied to variations in tropical convection in Indian Ocean and western/central Pacific

Skill at predicting offshore, wildfire favorable winds in California 1-3 months in advance

<u>Data</u>


- 1. Monthly / daily atmospheric and oceanic NCEP/NCAR Reanalysis 1 data
- 2. August-November 1970-2019
- 3. Indices of known climate variations (e.g., Indian Ocean Dipole)

Methods


- 1. Statistical and dynamical analyses (e.g., conditional compositing, correlations, regressions, wave train and teleconnection analyses)
- 2. Experimental forecast system development and testing
- 3. Hindcast and forecasting, including verification and skill scores

What we found:

Conditional Composite of Anomalous Upper Tropospheric Heights During Fire Favorable Novembers in California

Correlation between California winds in November and global SST in September

Identified 2 tropical SST regions as potential predictors of California winds in November

> Combined together into Indo-Pacific Index (IPI)

> > IPI = EIO - CTP

If IPI below normal, then predict California U850 winds to be below normal and thus fire favorable.

Regression model predictions based on IPI are skillful at leads of 1-3 months (HSS = 0.26-0.49).

Nov. 2020 Prediction monthly average zonal winds will be onshore and wildfire unfavorable

Presentation

Predicting Wildfire Favorable Conditions in California at Subseasonal to **Seasonal Lead Times Using Remote Predictors**

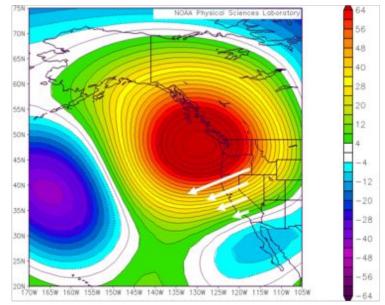
Ciara Dorsay¹, Tom Murphree², Kellen Jones²

¹University of California, Berkeley CA

²Naval Postgraduate School, Monterey CA

NOAA 45th Climate Diagnostics and Prediction Workshop Oct. 20, 2020

Offshore Flow: What we are trying to predict


Northern California

Southern California

200 mb Geopotential Height Anomaly Associated with the most offshore wind Novembers in California

Strong offshore winds at end of dry season

Large potential for wildfires

Background: Fire Favorable Winds

California November Monthly Average Zonal 850 Winds, 1970-2019 7 б AN, wildfire 5 unfavorable wind -4 J850 [m/s] 2 1 Ø BN, wildfire 0 favorable wind Camp/Woolsey Fires -1 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

In wildfire favorable Novembers, zonal winds less positive/more offshore than average

AN cutoff = 1.861 m/s CA mean = 1.500 m/s BN cutoff = 0.726 m/s

Research Process

We investigated:

- the dynamical relationships between these low-level, offshore winds in California and remote climate variations
- (2) the potential to use these relationships to skillfully forecast these fire favorable wind events at subseasonal to seasonal (S2S) lead times

Data and Methods

<u>Data</u>

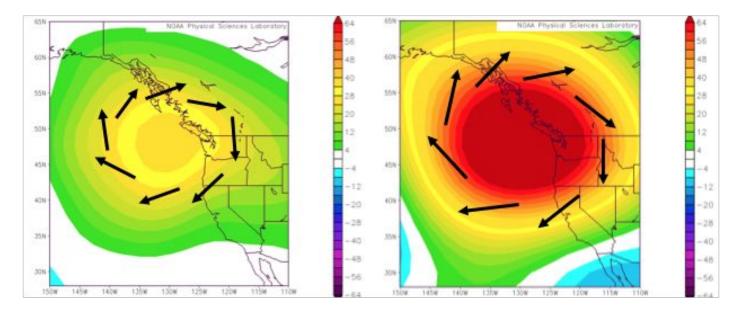
1.NCEP/NCAR Reanalysis 1 monthly/daily atmospheric and oceanic data

2.August-November 1970-2019

3. Climate variation index data (MEI, DMI, EMI)

Methods

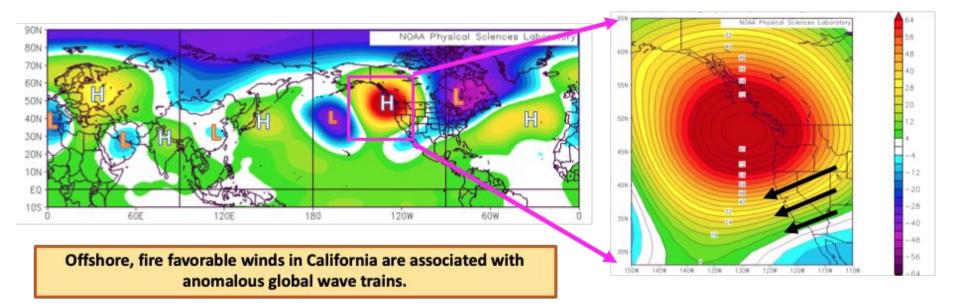
 Detrending and standardizing of atmospheric and oceanic data
Conditional compositing, correlations, regressions, wave train and teleconnection analyses

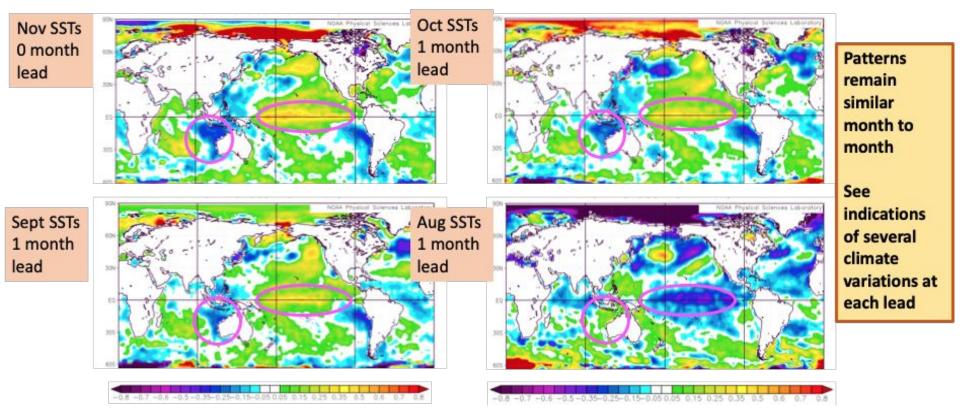

3. Experimental forecast system development and testing

4. Hindcasting and forecasting, including verification and skill scores

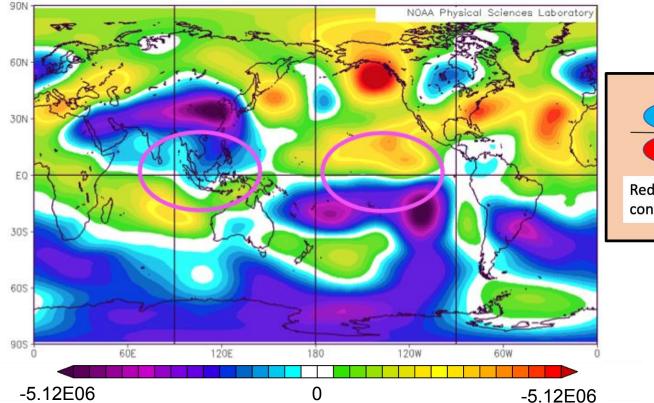
What behavior do we see in the atmosphere when we look at the most offshore Novembers in California?

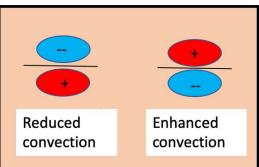
Conditional Composite of ZA850


Conditional Composite of ZA200

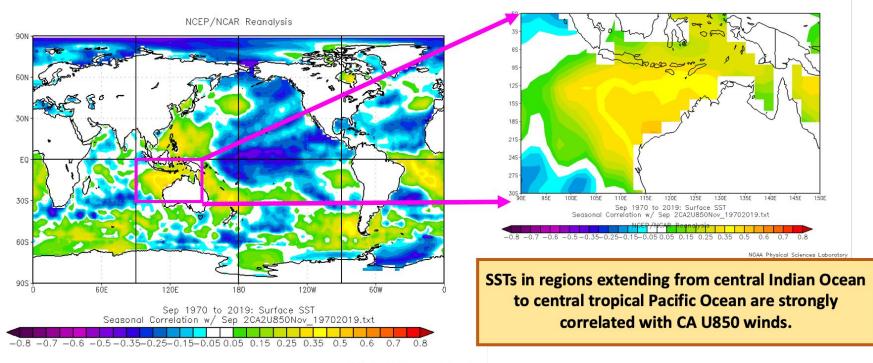

In offshore Novembers, there is a positive ZA in the lower troposphere and a positive ZA in the upper troposphere (equivalent barotropic anomaly)

What we found:


Conditional Composite of Anomalous Upper Tropospheric Heights During Fire Favorable Novembers in California



SSTA Composites During and Prior to Novembers with Fire Favorable Winds in California


Conditional Composite of October SFA200 (stream function anomalies at 200mb) Immediately Before Fire Favorable Novembers in California

Correlation between September global SSTs and November California zonal 850 mb winds

Correlations confirm composite maps

NOAA Physical Sciences Laboratory

Correlation between California winds in November and global SST in September

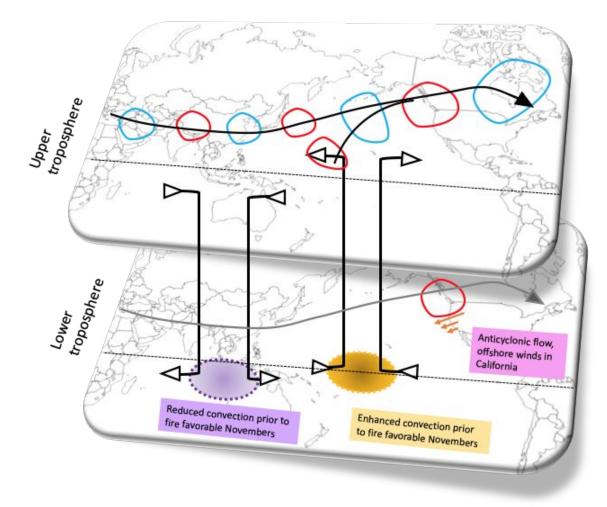
Identified 2 primary regions as potential predictors of California winds in November

> Combined together into Indo-Pacific Index (IPI)

> > IPI = EIO - CTP

If IPI below normal, then predict California U850 winds to be below normal and thus fire favorable.

IPI and Multiple Linear Regression Results


Correl. Values between IPI and Observed Nov CAU850 1970-2019

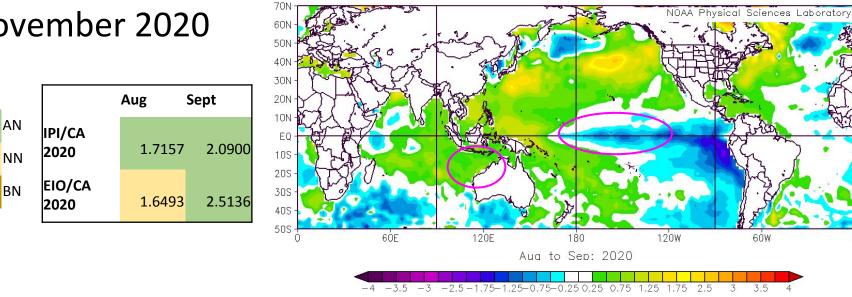
Aug IPI vs. Nov CAU850	0.488
Sept IPI vs. Nov CAU850	0.476
Oct IPI vs. Nov CAU850	0.526
Nov IPI vs. Nov CAU850	0.472

Created IPI and combined with year

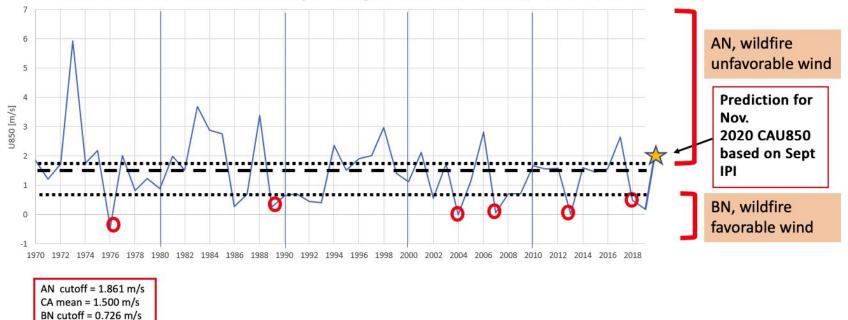
Developed MLR model

Hindcast 1970-2019 using output from linear regression model

Schematic: Interpretation of Dynamical Processes


What could be causing ups/downs: positive phase of Indian Ocean Dipole, El Niño Modoki

What is most likely not causing ups/downs: negative phase of Indian Ocean Dipole, La Niña Modoki, El Niño/La Niña


Prediction for November 2020

ΒN

NCEP/NCAR Reanalysis Surface Skin Temperature(SST) (K) Composite Anomaly 1981-2010 climo

Given Aug/Sept positive SSTAs in Eastern Indian Ocean and negative SSTAs in central tropical Pacific, expect to observe wildfire unfavorable winds in California Nov. 2020

California November Monthly Average Zonal 850 Winds, 1970-2019

Summary

Findings

- 1. California wildfire favorable winds in November are linked to tropical climate variations and may be predictable at leads of several months
- 2. Longer lead predictions should contribute to improved planning and reduction of risks and losses

Future Research

- 1. Expand to other months
- 2. Incorporate V component of wind into methodology
- 3. Develop better understanding of role of climate variations
- 4. Incorporate cross validation into prediction model

Acknowledgements

Gabriel Garagiulo and Annabelle Norman at the York School in Monterey, CA.

Sources

Unless otherwise indicated, all figures provided by the NOAA/ESRL Physical Sciences Laboratory, Boulder Colorado from their website at http://psl.noaa.gov/

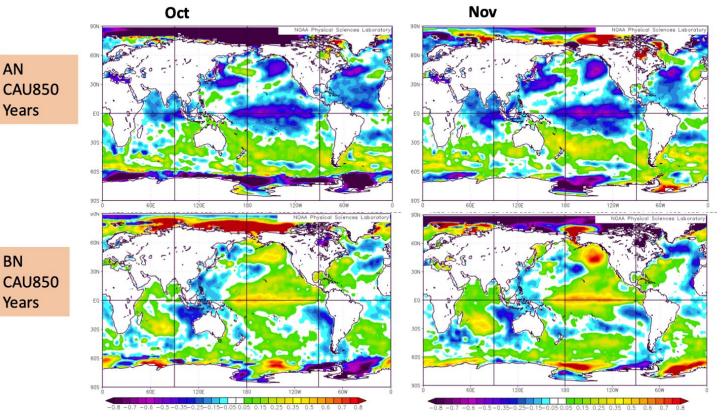
Kalnay, E. and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-year Project. Bull. Amer. Meteor. Soc., 77, 437-471.

Slide 2/9:

Associated Press, 2018: Battling 18 blazes, California may face worst fire season. Oroville Mercury Register, Accessed 4 October 2020, https://www.orovillemr.com/2018/08/08/battling-18-blazes-california-may-face-worst-fire-season/.

Slide 3:

Tucker, Jill, 2018: Insurance claims from California fires nearing \$12 billion. SFGATE, Accessed 4 October 2020, https://www.sfgate.com/news/article/Insurance-claims-from-California-fires-nearing-12540873.php.

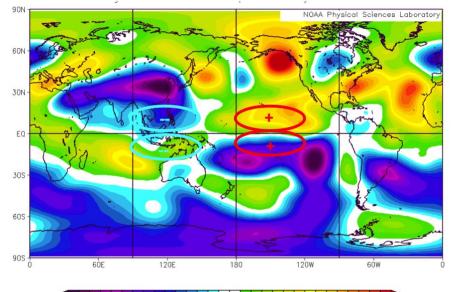

Active NorCal, 2018: Camp Fire Update: Death Toll Rises to 48 as Fire Grows to 135,000 Acres, Hundreds Still Missing. Accessed 4 October 2020, https://activenorcal.com/camp-fire-update-death-toll-rises-to-48-as-fire-grows-to-135000-acres-hundreds-still-missing/.

Associated Press, 2018: Camp Fire: Town of Paradise leveled in less than a day | Updates. ABC 10, Accessed 4 October 2020, https://www.abc10.com/article/news/local/wildfire/camp-fire-town-of-paradise-leveled-in-less-than-a-day-updates/103-612969687.

Slide 11:

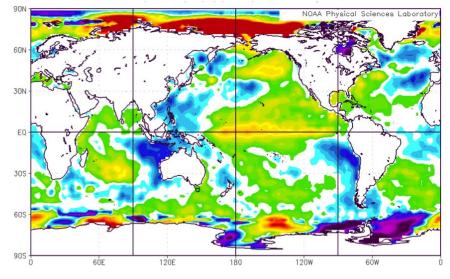
Cassidy, Emily, 2018: Here's What Smoke From California's Wildfires Looks Like From Space. Resource Watch, Accessed 4 October 2020, https://blog.resourcewatch.org/2018/11/14/heres-what-smoke-from-californias-wildfires-looks-like-from-space/.

Supplementary Slides

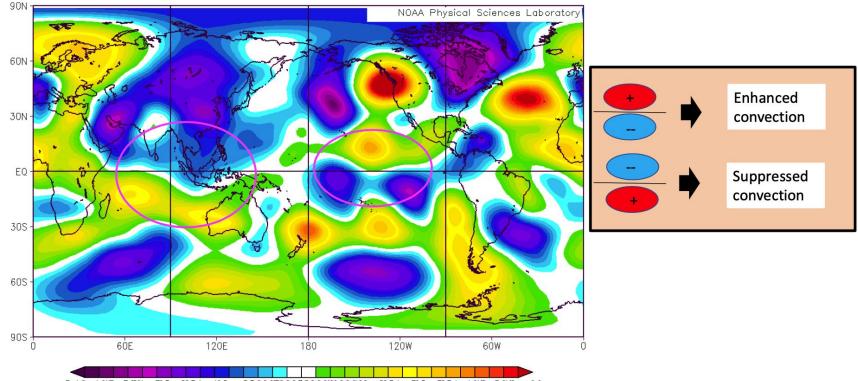


Conditional Composites based on BN/AN CAU850 Years: Oct and Nov SSTA

Tendency for anomalies to be opposite between AN/BN conditions


in tropics

Conditional Composite of October SFA200 (stream function anomalies at 200mb) During/Immediately Before Fire Favorable Novembers in California

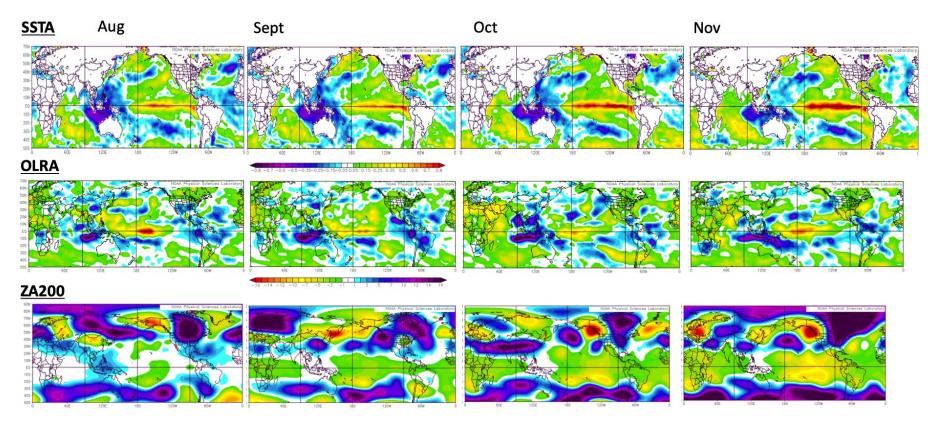

-		and the second				and the second second						_						
-5.	12	e40484	e - J (264	e-130Be	+20E4	e+106e	+960	3052	000000	00996	0000	6e+20	B4e+	DBe+	084e	4048e	= 5 CI62	!e+06

Conditional Composite of October SSTAs During/Immediately Before Fire Favorable Novembers in California

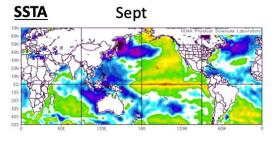
Conditional Composite of November SFA200 (stream function anomalies at 200mb) During/Immediately Before Fire Favorable Novembers in California

-5.12e4.04&e3.02Ae+30.02e+30.0

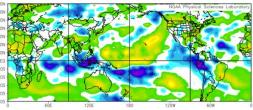
BN IPI Years

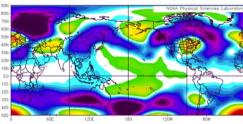

Aug IPI Years		Sept IPI Years	Oct IPI Years	Nov IPI Years
	1986	2004	1986	1991
	2018	1977	1976	1976
	1987	1986	1993	2018
	1997	1987	1987	1987
	1972	2002	1992	2002
	2019	2018	2018	1977
	2004	1976	2009	2004
	1977	1993	1977	1986
	1994	1997	2002	2006
	1976	1991	2003	1992
	1993	1979	1994	2019
	2012	1982	2004	1997
	2002	2006	1972	1993
	1982	2015	1990	2003
	2006	2019	2006	2014
	2015	1994	1991	2005

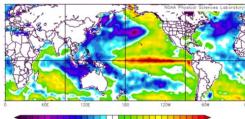
BN EIO Years

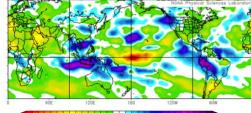

years	Aug EIO	years	Sept EIO	years	Oct EIO	years	Nov EIO
1972	23.462	1970	25.071	1971	26.436	1971	25.832
1976	23.049	1976	24.513	1972	26.508	1974	26.172
1977	23.195	1977	24.561	1975	26.441	1976	25.653
1978	23.383	1978	24.775	1976	25.626	1977	25.907
1986	22.323	1979	24.892	1977	26.275	1985	26.162
1987	23.397	1986	24.638	1978	26.473	1986	26.166
1993	23.189	1987	24.913	1985	26.043	1987	26.047
1994	23.404	1991	25.06	1986	25.474	1991	25.696
1997	23.336	1992	24.985	1987	26.29	1992	25.803
2004	23.188	1993	24.708	1992	25.951	1993	26.06
2006	23.384	1997	25.124	1993	25.804	2002	26.183
2007	23.446	2002	24.807	1995	26.378	2003	26.114
2008	23.454	2003	25.082	2002	26.573	2004	26.076
2012	23.105	2004	24.606	2003	26.376	2005	25.959
2018	22.527	2018	24.629	2005	26.531	2018	25.948
2019	22.927	2019	24.969	2011	26.494	2019	26.247

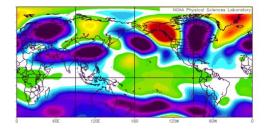
years	CA
1976	-0.443
1986	0.284
1987	0.703
1989	0.27
1990	0.654
1991	0.72
1992	0.465
1993	0.408
2002	0.557
2004	-0.006
2007	0.071
2008	0.726
2009	0.717
2013	0.012
2018	0.504
2019	0.203

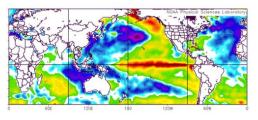

Conditional Composites based on BN Aug EIO SST

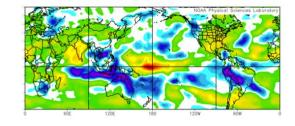

Conditional Composites based on BN Sept EIO SST

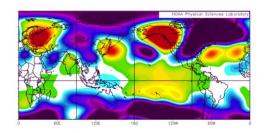


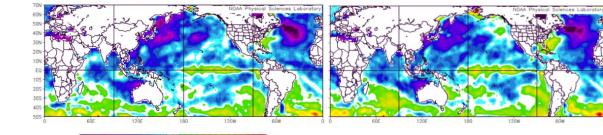


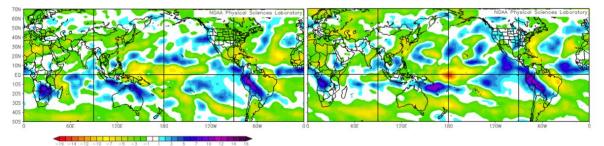

Oct


-0.8 -0.7 -0.6 -0.5 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.5 0.6 0.7 0.8

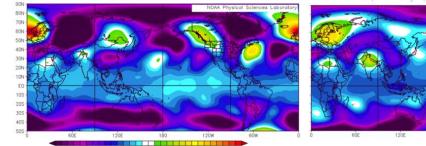


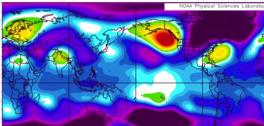

-16 -14 -12 -10 -7 -5 -3 -1 1 3 5 7 10 12 14 16


Nov



Conditional Composites based on BN Oct EIO SST $_{Nov}$

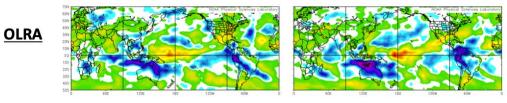




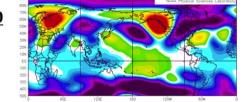
OLRA

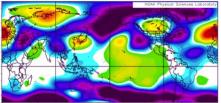
SSTA

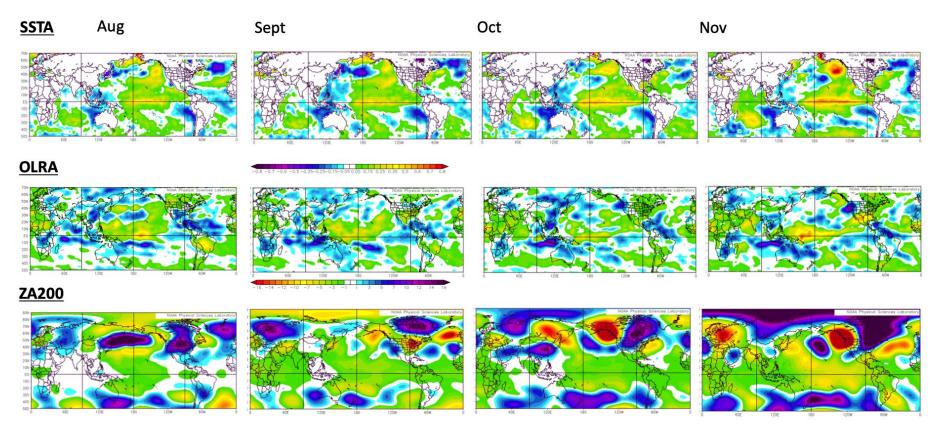
180


120W

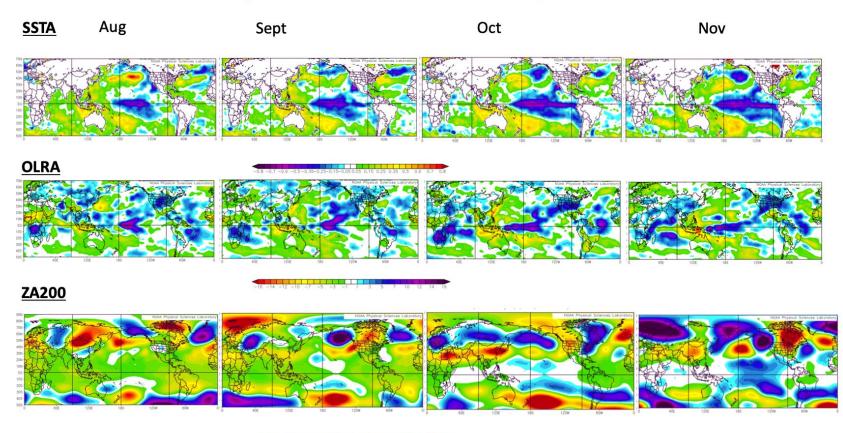
60W

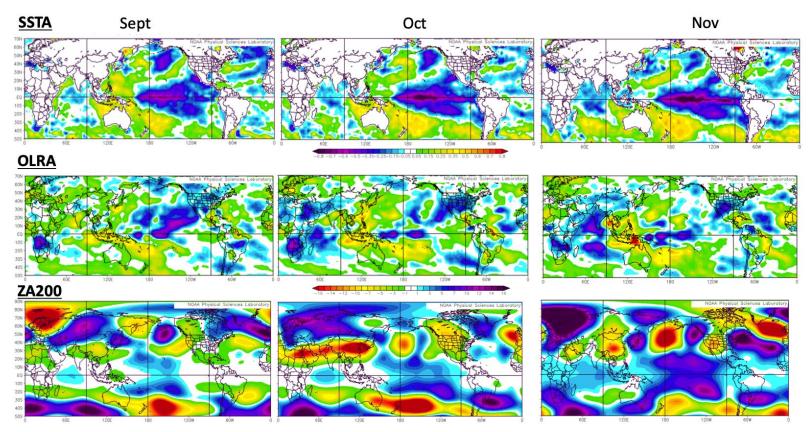

Conditional Composites based on BN Nov EIO SST



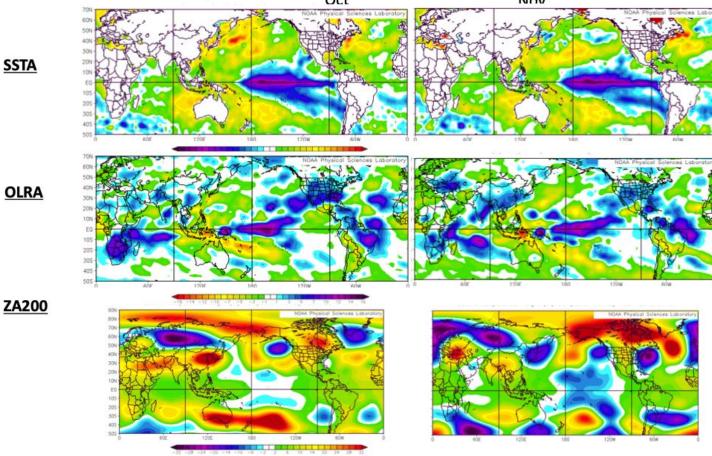

60E 120E 180 120W 60W

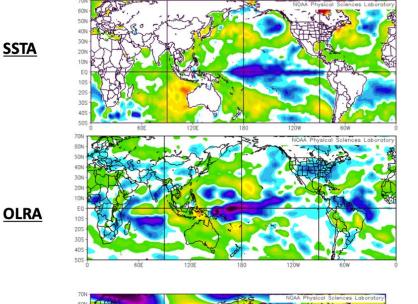
-32 -28 -24 -20 -14 -10 -6 -2 2 6 10 14 20 24 28 32

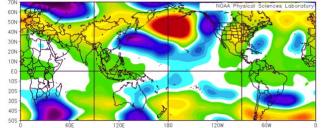

Conditional Composites based on BN Nov CAU850


AN EIO Years for following 4 slides

years	Aug EIO	years	Sept EIO	years	Oct EIO	years	Nov EIO
1973	24.543	1973	25.75	1973	27.124	1979	27.011
1974	23.876	1974	25.643	1983	27.126	1982	27.157
1980	23.873	1975	25.601	1984	26.969	1983	26.939
1983	23.886	1980	25.568	1988	27.648	1988	26.907
1988	24.347	1981	25.677	1996	27.412	1989	26.722
1991	24.109	1983	25.524	1998	27.812	1994	26.924
1996	24.434	1988	25.64	1999	27.156	1995	26.723
1998	24.797	1989	25.502	2000	26.957	1996	27.251
1999	24.25	1995	25.531	2008	27.374	1998	27.094
2001	24.137	1996	25.682	2010	27.555	1999	26.933
2009	23.857	1998	26.297	2012	27.035	2010	27.965
2010	24.116	1999	25.63	2013	27.051	2011	26.792
2011	23.856	2008	25.594	2014	27.042	2012	27.107
2013	23.954	2013	25.602	2015	27.95	2013	26.797
2015	24.057	2015	25.577	2016	27.384	2015	27.438
2016	24.253	2017	25.69	2019	27.168	2016	27.103


Conditional Composites based on AN Aug EIO SST

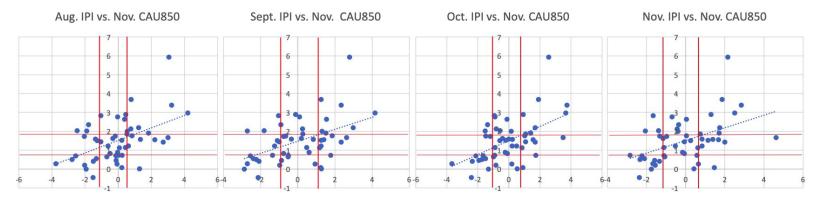

Conditional Composites based on AN Sept EIO SST


Conditional Composites based on AN Oct EIO SST $_{Nov}$

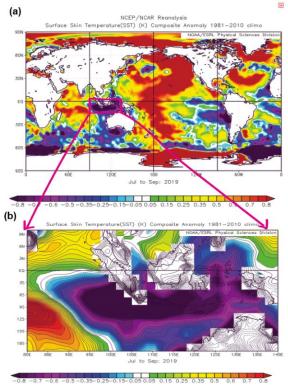
Conditional Composites based on AN Nov EIO SST

ZA200

-0.8 -0.7 -0.6 -0.5 -0.35-0.25-0.15-0.05 0.05 0.15 0.25 0.35 0.5 0.6 0.7 0.8

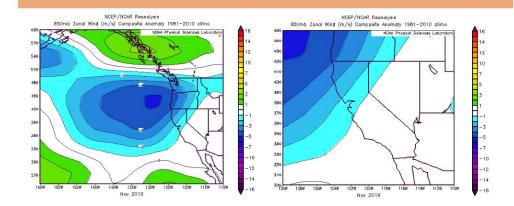

MLR Results

AUG SINGLE			SEPT SINGL	E		OCT SINGLE			NOV SINGLE			
Multiple R	0.5003		Multiple R	0.4989		Multiple R	0.3648		Multiple R	0.3215		
R Square	0.2503		R Square	0.2489		R Square	0.1331		R Square	0.1033		
	Coefficients	P-value		Coefficients	P-value		Coefficients	P-value		Coefficients	P-value	
ntercept	-27.4136	0.0004	Intercept	-36.8136	0.0004	Intercept	-20.4292	0.0148	Intercept	-18.8619	0.0343	
Aug EIO	1.2223	0.0002	Sept EIO	1.5163	0.0002	Oct EIO	0.8194	0.0092	Nov EIO	0.7680	0.0228	
AUG DETRE	NDED EIO, YEA	ARS, TRENDE	SEPT DETRE	NDED EIO, YEA	RS, TRENDE	OCT DETREM	IDED EIO, YEAR	RS, TRENDED	NOV DETREM	NDED EIO, YEA	RS, TRENDED	WIN
Multiple R	0.5486		Multiple R	0.5728		Multiple R	0.5372		Multiple R	0.4592		
R Square	0.3010		R Square	0.3281		R Square	0.2886		R Square	0.2108		
	Coefficients	P-value		Coefficients	P-value		Coefficients	P-value		Coefficients	P-value	
ntercept	39.0001	0.0453	Intercept	38.9990	0.0413	Intercept	48.7255	0.0150	Intercept	30.8717	0.1356	
years	-0.0188	0.0543	years	-0.0188	0.0489	years	-0.0239	0.0174	years	-0.0146	0.1589	
Aug EIO	1.2046	0.0002	Sept EIO	1.5841	0.0001	Oct EIO	1.1516	0.0003	Nov EIO	0.9615	0.0041	
AUG TREND	ED EIO, YEARS	, TRENDED V	SEPT TREND	ED EIO, YEARS	, TRENDED V	OCT TRENDE	D EIO, YEARS,	TRENDED W	NOV TREND	ED EIO, YEARS,	TRENDED W	/IND
Multiple R	0.5486		Multiple R	0.5728		Multiple R	0.5372		Multiple R	0.4592		
R Square	0.3010		R Square	0.3281		R Square	0.2886		R Square	0.2108		
	Coefficients	P-value		Coefficients	P-value		Coefficients	P-value		Coefficients	P-value	
ntercept	8.0369	0.6961	Intercept	5.3748	0.7907	Intercept	36.1756	0.0650	Intercept	28.5205	0.1696	
years	-0.0176	0.0711	years	-0.0220	0.0228	years	-0.0328	0.0024	years	-0.0263	0.0148	
Aug EIO	1.2046	0.0002	Sept EIO	1.5841	0.0001	Oct EIO	1.1516	0.0003	Nov EIO	0.9615	0.0041	
Aug IPI, Yea	rs, Trended W	ind	Sept IPI, Yes	ars, Trended W	ind	Oct IPI, Year	s, Trended Wi	nd	Nov IPI, Year	rs, Trended Wi	nd	
Multiple R	0.5443		Multiple R	0.5334		Multiple R	0.5785		Multiple R	0.5298		
R Square	0.2963		R Square	0.2845		R Square	0.3347	(R Square	0.2806		
	Coefficients	P-value		Coefficients	P-value		Coefficients	P-value		Coefficients	P-value	
ntercept	38.9997	0.0460	Intercept	38.9996	0.0478	Intercept	38.9997	0.0404	Intercept	38.9999	0.0483	
years	-0.0188	0.0548	years	-0.0188	0.0564	years	-0.0188	0.0484	years	-0.0188	0.0573	
Aug IPI	0.3314	0.0002	Sept IPI	0.3178	0.0003	Oct IPI	0.3716	0.0001	Nov IPI	0.3347	0.0004	


IPI and Multiple Linear Regression Results

Aug IPI, Years, Trended Wind			Sept IPI, Yea	ars, Trended W	ind	Oct IPI, Years, Trended Wind		Nov IPI, Years, Trended Wind			
Multiple R	0.5443		Multiple R	0.5334		Multiple R	0.5785		Multiple R	0.5298	
R Square	0.2963		R Square	0.2845		R Square	0.3347		R Square	0.2806	
	Coefficients	P-value		Coefficients	P-value		Coefficients	P-value		Coefficients	P-value
Intercept	38.9997	0.0460	Intercept	38.9996	0.0478	Intercept	38.9997	0.0404	Intercept	38.9999	0.0483
years	-0.0188	0.0548	years	-0.0188	0.0564	years	-0.0188	0.0484	years	-0.0188	0.0573
Aug IPI	0.3314	0.0002	Sept IPI	0.3178	0.0003	Oct IPI	0.3716	0.0001	Nov IPI	0.3347	0.0004

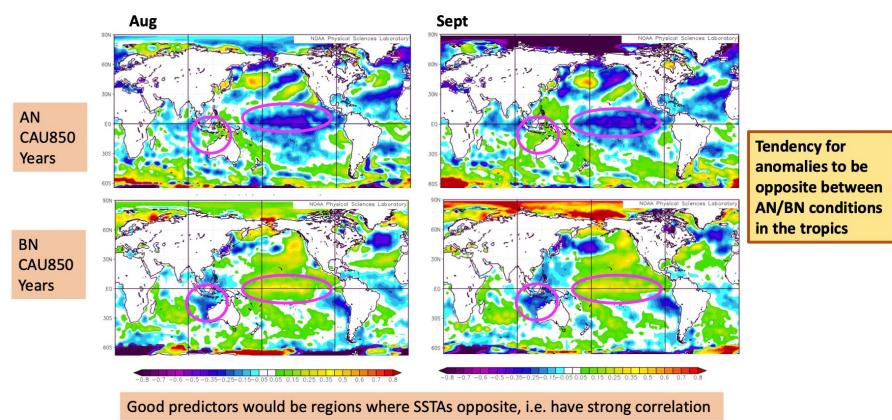
Scatter Plots w/ Trend Lines at Each Lead



SST anomalies in summer-fall 2019 indicated increased risk of fire favorable offshore wind events in California in Oct.-Nov. 2019

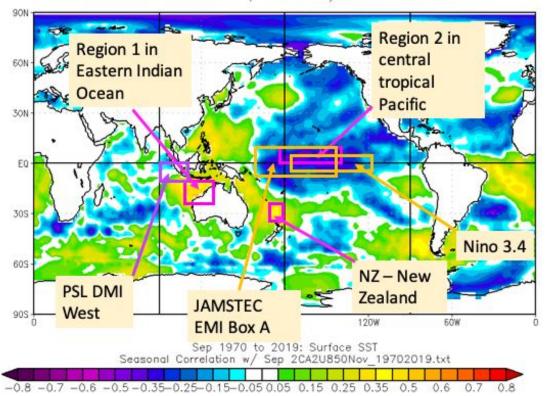
Predictions

• **Summer 2019**: wanted to see how well this methodology would perform given high magnitude presence of negative SST anomalies in maritime continent during fall 2019


SSTs in 2019 correctly predicted offshore wind in California Nov 2019

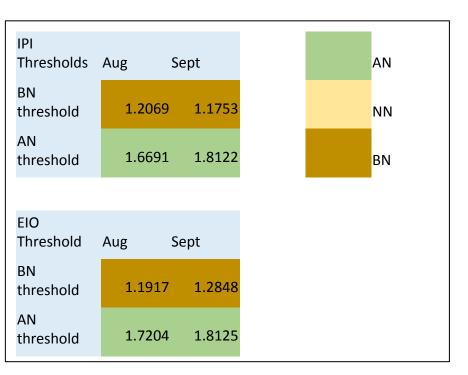
Aside: Using trended vs. detrended data

Does detr CAU850 y	rending change E	BN EIO Trends	ENM Trends	NZ Trends
trended	detrend	Aug SST: y=-0.001x + 25.704	Aug SST: y=0.014x + 27.582	Aug SST: y=0.0085x + 1.846
1976	5 1976	Sept SST: y=0.002x + 21.226	Sept SST: y=0.0143x + 27.879	Sept SST: y=0.0028x + 13.765
2004	1986	Oct SST: y=0.0078x + 10.898 Nov SST: y=-0.0041x + 28.466	Oct SST: y=0.0152x + 28.406 Nov SST: y=-0.0159x + 27.579	Oct SST: y=9E-05x + 18.754 Nov SST: y=-0.0041x + 28.466
2013	3 1989	100 331. y=-0.0041X + 28.466	NOV 331. y=-0.0139X + 27.379	NOV 331: y=-0.0041x + 28.400
2007	7 2004	X -> 1970, etc.	X -> 1,2, etc.	X -> 1970, etc.
2019	2007	x + 1570, etc.	x > 1,2, ctc.	<i>x > 1570, etc.</i>
1989	2013			
1986	5 1993		CALLSEO Trand	
1993	3 1992		CAU850 Trend	
1992	2 1978		Nov U850: y= -0.0188x + 39	
2018	3 1987		NOV 0850. y0.01888 + 35	
2002	2 1990		X -> 1970, etc.	
1990	1980		x -> 1970, etc.	
1987	7 1991			
2009	2019			
1991	L 2002			

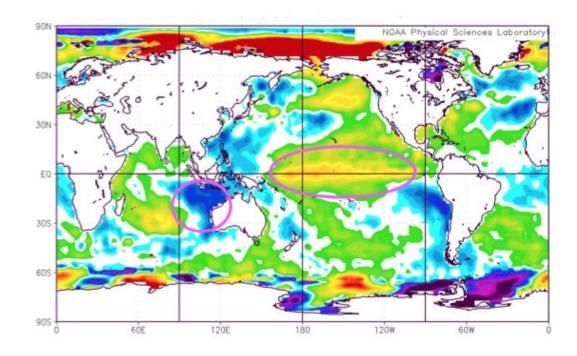

Correlation Values between different California regions

CA/NorCal	CA/CentCal	CA/SoCal	
().94	0.98	0.94
NorCal/CentCal	NorCal/SoCal	SoCal/Cent	Cal
().88	0.77	0.93

Conditional Composites based on BN/AN CAU850 Years: Aug and Sept SSTA


Correlation between CA winds in November and global SST in September

NCEP/NCAR Reanalysis


Familiar climate variations seem to play a role, but standard indices not the best predictors

Prediction for November 2020

	Aug			
IPI/CA 2020		1.7157		2.0900
EIO/CA 2020		1.6493		2.5136

Conditional Composite of November SSTAs During Fire Favorable Novembers in California

0.6

0.7

0.8

-0.8 -0.7 -0.6 -0.5 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.5

Why we looked at SSTs:

Anomalous behavior easy to observe

Indications of known climate variations (Indian Ocean Dipole [IOD], El Niño Modoki [ENM], El Niño)