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Challenges in Extended-range Forecasts 

• Several challenges in predicting the atmospheric and terrestrial variability for the 
time scale from week-2 to week-4 due to relatively small predictable signal;

– Influence on this time range from initial condition is weakening;

– The time average is not large for the influence of the slowly varying boundary 
conditions (SST, sea Ice, soil moisture…) to emerge above the noise;

• A large forecast ensemble is required to extract the small predictable signal;

• In general, a limited set of ensemble is available at operational centers on a daily 
basis for S2S forecasts.

• For example, every day NCEP CFSv2 provides a total of 16 members  for the 45-day 
target period.

• Using the current operational configuration, can the ensemble size be increased to 
better discern  predictable signal and improve skill?
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Z200 (PNA) Anomaly correlation skill with difference ensemble sizes 
(forecast from the same initial time) 

• Forecast skill decreases with increasing lead time (-).
• Forecast skill increases with larger ensemble size (+).

Question: Can the predictions gain skills from a lagged ensemble with 

inclusion of  more members from longer lead times? 
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Analysis Approach

• Examine if the prediction skills can be improved 
from a lagged ensemble for predicting week2, 
week-3/4, and monthly anomalies? If yes, then,

For what lagged time the skill get the most 
improvements – the optimal lag time of the lagged 
ensemble?

Does the optimal lag time vary with the available 
number of forecast members from each initial date 
(for example, one member per day vs 4 members per 
day or 16 members)?

What is the optimal lag time and how much can 
prediction skill gain from a lagged ensemble based on 
CFSv2 current configuration (16 members per day)?
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Data

• Ensemble forecasts from CFSv2 operational forecasts

– Every day 16 members 45-day forecasts;

• Variables:

– Precipitation (Prec); 2-meter temperature (T2m)

• Verification region and time period:

– CONUS;

– NDJFM 2011  2020 (9 years);

• Verification data:

– Prec, the CPC unified daily gauge precipitation analysis;

– T2m, the CPC global daily mean surface temperature;
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Available 
forecasts
per day

Lag
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… … … … … … …
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1 1 2*1 3*1 … 9*1 10*1
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Construction of lagged ensemble forecasts

• To assess the influence of lagged ensemble construction on 
the prediction skills



T2m Anomaly correlation skill (ACS) averaged over CONUS
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• ACS varies with the lag time and the ensemble size at 
each lead;

• For a fixed lag time (y-axis), the skill improves as the 
ensemble size at each lead increases; the rate of 
increase in skill decreases when the ensemble size at 
each lead gets larger;

• For a fixed ensemble size at each lead (x-axis), there is 
an optimal lag time at which the skill reaches its 
maximum.

• The optimal lag time decreases as the ensemble size at 
each lead gets lager;

• For small ensemble size at each lead time, more skill 
improvements from lagged ensembles;



T2m Anomaly correlation skill averaged over CONUS
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Prec Anomaly correlation skill averaged over CONUS
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T2m RMSE skill averaged over CONUS
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• RMSE varies with the lag time and the ensemble size 
at each lead;

• For a fixed lag time (y-axis), RMSE decreases as the 
ensemble size at each lead increases; the rate of 
reduction in RMSE decreases when ensemble size at 
each lead gets larger;

• For a fix ensemble size at each lead (x-axis), there is an 
optimal lag time at which RMSE reaches its minimum.

• The optimal lag time decreases as the ensemble size at 
each lead gets lager;

• For small ensemble size at each lead time, larger RMSE 
reductions from lagged ensembles;

• The optimal lag time differs for different skill 
measures.



T2m RMSE skill averaged over CONUS
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Prec RMSE skill averaged over CONUS
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Optimal lag for the CFSv2 current configuration
(16 members per day)
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T2m CONUS
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Precipitation CONUS
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Summary

• Skill improvement can be realized with lagged ensemble 
approach for extended-range forecasts: the potential for 
skill gains gets smaller as the ensemble size at each lead 
time increases.

• The optimal lag time at which skill reaches its maximum 
varies with the ensemble size at each lead, forecast 
variable, time scale, and skill measure.

• For CFSv2 current configuration (16 members per day), a 
small improvement can be realized with the lagged 
ensemble approach. In general, 2-days-lagged ensembles 
are reasonable for  week-2, week-3/4, and monthly 
forecasts; while it can be extended to 4-days-lagged 
ensembles for T2m week-3/4 forecasts.
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