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Key Research Question

What is the limit of global 
synoptic (1-day to 14-day) 

and subseasonal (1-week to 
1-month) prediction skill of 

atmospheric river occurrence, 
and how does each vary as a 

function of season, region, 
and certain large-scale 

climate conditions?

Key Applications Question

Can present-day 
subseasonal-to-seasonal 
(S2S) forecast systems 

provide benefit to CA water 
resource management 

decision makers?



A global, objective algorithm for AR identification 
(Guan and Waliser 2015)

• Based on Integrated Vapor Transport 
(IVT) fields and a number of common AR 
criteria (e.g. Ralph et al. 2004)

• Applied to global hindcast/forecast 
systems and reanalysis datasets

• Code and databases available at:
https://ucla.box.com/ARcatalog

• Databases include AR Date, IVTx,y, 
Shape, Axis, Landfall Location, etc.

• Used for GCM evaluation (Guan and 
Waliser 2017), climate change 
projections (Espinoza et al. 2018), & 
forecast skill assessment (DeFlorio et al. 
2018a and 2018b)

https://ucla.box.com/ARcatalog


The S2S Project Database 
(s2sprediction.net)

• Suite of real-time forecasts and 
several decades of hindcasts 
from 11 operational forecast 
models

• Maximum lead time ranging from 
32 days to 60 days

• Hindcast ensemble size ranging 
from 1 to 33

• Variety of forecasting 
configurations and other model 
parameters (heterogeneity
amongst models)

• “dataset of opportunity” Vitart et al. 2017



Global Evaluation of Atmospheric River Subseasonal Prediction Skill
Michael J. DeFlorio1, Duane E. Waliser1, Bin Guan1,2, F. Martin Ralph3, and Frederic Vitart4; (Climate Dynamics 2018)

1NASA Jet Propulsion Lab., 2UCLA, 3UCSD/SIO/CW3E, ECMWF4

Purpose of Study
• Evaluate global ECMWF hindcast prediction skill of 1-week AR occurrence (AR1wk; number of AR days per week) at 1-week to 1-month lead times 
• Quantify interannual variability of AR1wk magnitude, and identify conditions of climate variability which exhibit higher/lower AR1wk prediction skill

• (left) ECMWF AR1wk occurrence forecast skill outperforms a 
reference forecast based on monthly climatology of AR1wk 
occurrence at week-3 (14d-20d) lead over the North 
Pacific/Western U.S. region

• (right) Higher forecast skill is evident during Phase 8 of the 
Madden-Julian Oscillation at week-2 (7-day to 13-day) lead 

Global climatology of wintertime AR1wk, 1996-2015
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• AR1wk is largest in midlatitude storm track regions
• ECMWF credibly simulates observed  AR1wk climatology

Does ECMWF AR1wk skill exceed climatological skill? 
Is AR1wk skill modulated by large-scale climate mode activity?
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Review of winter 2017-2018 activities and 
winter 2018-2019 goals

Winter 2017-2018: what we did

• Create an automated pipeline to:
• detect atmospheric rivers from ECMWF, ECCC, 

and NCEP forecast systems
• Twice-a-week for ECMWF
• Weekly or bi-monthly for ECCC, NCEP

• calculate forecast skill of “number of AR days per 
week” for week-1, week-2, and week-3 lead 
windows and compare to hindcast skill benchmarks 
[DeFlorio et al. 2018b; DeFlorio et al. 2018c (in 
prep)]

• Disseminate experimental forecasts and solicit feedback 
during S2S telecons and JPL-DWR meetings

• Develop verification statistics using MERRA2 reanalysis 
data for winter 2017-2018 outlooks (nearly completed) 
and for winter 2018-2019 outlooks (next spring/summer)

Winter 2018-2019: what we’re doing

• Produce near real-time week-3 AR1wk occurrence 
forecasts for ECMWF, ECCC, and NCEP forecast 
systems, stratified by mean AR intensity (>250 kg/ms, 
>500 kg/ms)

• Display week-3 outlooks on protected CW3E website
• Engage in NCEP CPC week-3/week-4 Friday 

discussions (POC: Jon Gottschalck, NCEP/NOAA)
• Working to add NASA GMAO experimental forecasts   

to this effort (POC: Deepthi Achuthavarier, NASA 
Goddard)



Experimental ECMWF Atmospheric River Forecast* 
Issued on Thursday, October 18, 2018 

Contents:

Slides 1 and 2:  “Weather” - Typical presentation of US west coast weather/precipitation forecast over 
lead times of 1 to 14 days considering only the likelihood of an atmospheric river (AR) occurring on a 
given forecast day.  Novelty – a weather forecast presented only in terms of AR likelihood. 

Slide 3:  “Subseasonal” - US west coast weather/precipitation forecast for week 3 considering the 
likelihood of an atmospheric river occurring in the given forecast week. 
Novelty – as above, but also specifically for week 3, an extended/long-range or “subseasonal” prediction 

*This is an experimental activity for the 2017-18 and 2018-19 winters.  Methodologies and hindcast skill are documented 
in DeFlorio et al. (2018a,b). Further validation of the real-time forecast results is required and underway.  This phase of 
the research includes gathering stakeholder input on the presentation of information – feedback is welcome.    

POC: Michael J. DeFlorio (michael.deflorio@jpl.nasa.gov)



October 18, 2018 forecast: probability of AR occurrence during week-1
***EXPERIMENTAL AR FORECAST***

Week-1 
(1-day to 7-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)
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Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and M. Ralph using 51-member real-time ECMWF 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR



***EXPERIMENTAL AR FORECAST***

Week-2 
(8-day to 14-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)

October 18, 2018 forecast: probability of AR occurrence during week-2

Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and M. Ralph using 51-member real-time ECMWF 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR
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Above average #ARs

Top row: hindcast climatology (ECMWF 1996-2015 data)
Bottom row: real-time forecast minus climatology (ECMWF 51-

member ensemble)

Week-3 
(Combined 15-day to 21-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)

***EXPERIMENTAL AR FORECAST***
October 18, 2018 forecast: number of AR days during week-3

Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and M. Ralph using 51-member real-time ECMWF 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR

Below average #ARs

ECMWF



Multi-model Experimental S2S Atmospheric River Forecast* 
Issued on Thursday, October 18, 2018 

*This is an experimental activity for the 2017-18 and 2018-19 winters.  Methodologies and hindcast skill are documented 
in DeFlorio et al. (2018a,b). Further validation of the real-time forecast results is required and underway.  This phase of 
the research includes gathering stakeholder input on the presentation of information – feedback is welcome.    

POC: Michael J. DeFlorio (michael.deflorio@jpl.nasa.gov)

Contents:

Definition of “Subseasonal” - US west coast weather/precipitation forecast for week 3 considering the 
number of atmospheric river days predicted to occur in the given forecast week. 
Novelty – an S2S forecast presented only in terms of AR likelihood - specifically for week 3, an 
extended/long-range or “subseasonal” prediction 

Slide 1: ECMWF (European Centre for Medium-Range Weather Forecasts) forecast system
Slide 2: NCEP (National Centers for Environmental Systems) forecast system 
Slide 3: ECCC (Environment and Climate Change Canada) forecast system



Above average #ARs

Top row: hindcast climatology (ECMWF 1996-2015 data)
Bottom row: real-time forecast minus climatology (ECMWF 51-

member ensemble)

Week-3 
(Combined 15-day to 21-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)

***EXPERIMENTAL AR FORECAST***
October 18, 2018 forecast: number of AR days during week-3

Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and M. Ralph using 51-member real-time ECMWF 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR

Below average #ARs

ECMWF



Week-3 
(Combined 15-day to 21-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)

Top row: hindcast climatology (NCEP 1999-2010 data)
Bottom row: real-time forecast (NCEP 16-member ensemble)

***EXPERIMENTAL S2S AR FORECAST*** NCEP

Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and F. M. Ralph using 16-member real-time NCEP 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR

October 18, 2018 forecast: number of AR days during week-3

Above average #ARsBelow average #ARs



Week-3 
(Combined 15-day to 21-day lead)

Contact: M. DeFlorio 
(michael.deflorio@jpl.nasa.gov)

Top row: hindcast climatology (ECCC 1995-2014 data)
Bottom row: real-time forecast (ECCC 21-member ensemble)

***EXPERIMENTAL S2S AR FORECAST*** ECCC

Experimental AR forecast issued on Thursday, 
October 18, 2018 by M. DeFlorio, D. Waliser, A. 
Goodman, B. Guan, A. Subramanian, Z. Zhang, 

and F. M. Ralph using 21-member real-time ECCC 
data for an Experimental AR Forecasting Research 

Activity sponsored by California DWR

October 18, 2018 forecast: number of AR days during week-3

Above average #ARsBelow average #ARs



Ongoing verification efforts for winter 
2017-2018 atmospheric river 

occurrence experimental forecasts



Strategy: verify week-3 AR occurrence 
experimental forecasts categorically

• forecast metric: “number of AR days per week” (AR1wk)
• define categories of AR occurrence (subject to change):
• ”0 days” - no AR activity
• ”1 day” - low AR activity
• “2 days” - moderate AR activity 
• ”3-7 days” - high AR activity 

• calculate average Brier Skill Score (BSS) over forecast period for each 
category



Brier Skill Score (BSS) overview
• Brier Skill Score (BSS) verifies accuracy of probabilistic forecasts of a binary event that can be 

grouped into categories
• in our case, whether there were a given number (0, 1, 2, 3-7) of AR days in a given week

• BSS = 1 – (BS/BSref)
where BS    = Brier score for forecast = !" ∑$%!

" ('$−)$)+
BSref = Brier score for reference climatology     = !" ∑$%!

" ('$,-.$/−)$)+
N = number of forecasts
P = forecast probability
O = observations (AR = 1, no AR = 0)

Pclim = reference climatology (“long term”
observations)

• Compute BSS for each AR day category

Interpretation
• BSS < 0 à forecast skill is lower than a forecast made using climatology
• BSS = 0 à forecast skill is equal to a forecast made using climatology (i.e. no skill)
• BSS = 1 à forecast skill is perfect compared to a forecast made using climatology



Forecast date during Winter 2017−2018 (MMDD)
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Comparison to categorical hindcast skill 
benchmarks for the 1 AR day/week category
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Slightly positive skill in some places, but mostly zero skill almost everywhere by week-3
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Summary: subseasonal-to-seasonal (S2S) forecasting of 
atmospheric rivers

• Atmospheric rivers occur globally and influence weather and water 
extremes.

• Total amount of annual precipitation over the western U.S. is strongly 
influenced by occurrence or absence of atmospheric rivers.

• Subseasonal-to-seasonal (S2S) forecasting lead times for atmospheric 
rivers represent a critical decision-making time window for water resource 
managers.

• Real-time experimental AR occurrence forecasting effort (and verification) 
using ECMWF, NCEP, and ECCC data is ongoing (collaboration between 
JPL, UCSD-Scripps CW3E, and DWR).


