Weather regime diagnostic tools for wintertime sub-seasonal ensemble forecasts

Andrew W. Robertson, Nicolas Vigaud, Jing Yuan and Michael K. Tippett

43rd Annual Climate Diagnostics and Prediction Workshop Santa Barbara, California, October 23-25, 2018

- 1. Weather Regimes over North America from Reanalysis; ENSO/MJO relationships; surface impacts
- 2. ECMWF model regimes
- 3. CFSv2 subseasonal forecast regime diagnostics

Outline

Weather Regimes aka Large Scale Meteorological Patterns

- Long history in dynamical meteorology of the midlatitudes of so-called low frequency variability (LFV: 10–50 days) that organizes synoptic-scale weather: index cycles, blocking, quasi-equilibria, Grosswetterlagen, . . .
- WRs are typically defined through classification of weather maps, using geopotential height data
- Can the concept of discrete circulation regimes lead to improved sub-seasonal to seasonal forecasts, by providing a low-order coarse-graining of S2S forecast evolution?

FIG. 4. Left: 500-hPa maps for the points in phase space that correspond to the centroids of the clusters labeled A, G, and R (indicated by boldfaced type in Fig. 3); contour interval 60 m. Right: The corresponding composite anomaly maps: contour interval 50 m, negative contours are dashed. Printed at the top of each panel is the number of maps in the cluster and the reproducibility parameter.

EARTH INSTITUTE | COLUMBIA UNIVERSITY

Greenland High (NAO-)

Pacific Trough (PNA)

search Institute

Society

Weather Regimes over North America from Reanalysis

 K-means analysis of Z500 daily Oct-Mar fields from MERRA reanalysis data [150E-40W, 10N-70N], 1982-2014

 Anomalies from the mean seasonal cycle, filtered to retain larger scales using 10 leading EOFs

(the dashed line indicates 10% significance level according to a first-order Markov process)

Vigaud et al. (2018, MWR)

Weather Regimes over North America from Reanalysis

Similar to

Strauss and Molteni (2004) Strauss et al (2007) Stan and Strauss (2007)

Based on NCEP Z200

EARTH INSTITUTE | COLUMBIA UNIVERSITY

Vigaud et al. (2018, MWR)

Weather Regime Surface Impacts

Precipitation

Similar overall patterns between observed-data impacts and model's own surface impacts, Vigaud et al. (2018, MWR) But substantial regional differences

MERRA

40°N

30^ol

Temperature

40[°]N

30⁰N

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

ECMWF

101 Cinnate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

Forecast Evolution in WR Space

- Use the 4 MERRA regimes to define a low-order subspace for large-scale Z500 flow
- Circulation evolution is portrayed by regime persistence and transitions
 - We track the forecast evolution by projecting 5-day running means of the CFSv2 forecast ensemble means onto the MERRA-regime subspace
 - On each day, the forecast Z500 pattern is assigned to the most-similar MERRA regime pattern
- Similarity is defined by pattern correlation of anomalies from a seasonallyvarying (and lead dependent) model climatology

CFSv2 Hindcasts of 2008/9 Winter Projected on MERRA Regimes

International Research Institute for Climate and Society Earth Institute | Columbia University

CFSv2 Hindcasts of 2008/9 Winter Projected on MERRA Regimes

Jan–Feb Regime 4–>1 Episode and transition Well forecast up to 4 weeks ahead

CFSv2 Hindcasts of 2008/9 Winter Projected on MERRA Regimes

Jan–Feb Regime 4–>1 Episode and transition Well forecast up to 4 weeks ahead

(RMM1,RMM2) phase space for 1-Jan-2009 to 31-Mar-2009

Blue line is for Mar, green line is for Feb, red line is for Jan

(C) Copyright Commonwealth of Australia 2013. Bureau of Meteorology

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

MJO

S2S Drivers of Regime Frequency

SST Year-to-Year Correlations with Frequency

• Regime 3 (Pacific trough/PNA) is related to El Niño and 10–15 days after MJO phase 6 • Regime 4 (Pacific ridge/RNA) is related to La Niña and after MJO phase 3

Frequency vs MJO Phase

CFSv2 Forecasts of 2015/16 Winter

CFSv2 Forecasts of 2015/16 Winter

forecasted beyond 2 weeks

How close are model forecasts to the observed regime centroids?

- Color saturation denotes strength of similarity between forecast ensemble mean and MERRA regime centroid
- Longer lead forecast ensemble mean Z500 anomalies tend to be less well categorized by regime pattern

Regime Frequency: CFSv2 vs MERRA

Mean Regime Occurrence vs Reanalysis

Minimal bias in longer lead forecasts

Regime Frequency: CFSv2 vs MERRA

Mean Regime Occurrence vs Reanalysis

Minimal bias in longer lead forecasts

Interannual Correlations of **Regime Counts vs Reanalysis**

Regime 3 has best week 3-6 skill

CFSv2 Regime Counts Anomaly Correlation Skill

1999–2014 Hindcasts

• skill limited to 2 weeks in general

2015/16 Forecasts

• week 3-4 skill in 2015/16 in PNA/RNA regimes

Weekly counts

(7-day sliding window targets i.e., [d-3,d+3] for a lead of d days)

All ECMWF reforecasts projected onto MERRA weather regimes

Vigaud et al. (2018, MWR)

ECMWF **Forecast Skill**

Weather Regime Forecasts in Real Time

Weather Regime Forecasts in Real Time

Observed Geopotential Height Anomaly

Weather Regime Forecasts in Real Time

Observed Geopotential Height Anomaly

Summary

- Set of four K-means daily Geopotential height map regimes, whose occurrence is related to ENSO and MJO phases and precip/temperature patterns over North America.
- ECMWF model at day 1–7 leads reproduces these regime structures well from independent analyses; CFSv2 less so.
- Both ECMWF & CFSv2 models skillful in MERRA-regime space to 10–15 days.
- Cases of good skill in CFSv2 up to 4 weeks ahead such as Dec-Feb 2008/9, associated with ENSO and possibly MJO. Pacific Trough Regime greatly over-forecasted in 2015/16.
- "Chiclet diagrams" provide a "tracker" of large-scale forecast evolution and assessment, highlighting past skillful intraseasonal episodes and real-time development.