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The Early Days at Scripps, ca 1998

The various model predictions that are generated each month by the IRI EFD are not released to the general public. Instead the model predictions and sta- tistical inputs are combined in a subjective manner to produce a “net assessment,” 
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More objective Net Assessments quickly followed 
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ensembling. This is consistent with
findings of others that, following the
removal of biases in individual mod-
els, multimodel ensembling typically
produces skills equal to or just slightly
better than the skill of the most skill-
ful AGCM in the set (Pavan and
Doblas-Reyes 2000; Palmer et al. 2000;
Peng et al. 2002).

A reason for the better perfor-
mance of the multimodel ensemble
predictions than the IRI’s issued fore-
casts for temperature has to do with
the disappointing performance of a
statistical tool—the ENSO-based
probabilistic composites—that con-
tributed to the issued forecasts. (How-
ever, as discussed below, this same tool
bolstered the skills of the precipitation
forecasts.) Indeed, Goddard et al.
(2003a) reported that the AGCMs
were the highest scoring input tools to
the IRI’s temperature forecasts over
the 4-yr period.

Figure 5 contains a set of reliabil-
ity diagrams for three versions of the
temperature forecasts over the 4-yr
period: the IRI’s Net Assessment fore-
casts, the objective multimodel en-
semble, and one of the AGCMs. The
concept of reliability is well developed

FIG. 2. Illustration of the IRI’s forecast map graphic used before Jun
2001.

TABLE 1. The AGCMs used at IRI’s forecast operation in Oct 2001, with their associated refer-
ences. Revision of this list by Aug 2003 is indicated in Fig. 1.

Model Where model was developed Where model is run monthly

CCM 3.2 NCAR, Boulder, COa IRI, Palisades, NY
NCEP/MRF9 NCEP, Washington, DCb QDNR, Queensland, Australia
ECHAM 3.6 Max Planck Institute, Hamburg, Germanyc IRI, Palisades, NY
ECHAM 4.5 Max Planck Institute, Hamburg, Germanyd IRI, Palisades, NY
NSIPP NASA GSFC, Greenbelt, MDe NASA GSFC, Greenbelt, MD
COLA Center for Ocean–Land–Atmosphere COLA, Calverton, MD

Studies (COLA), Calverton, MDf

aHack et al. (1998); Hurrell et al. (1998); Kiehl et al. (1998).
bKumar et al. (1996); Livezey et al. (1996).
cDeutsches Klimarechenzentrum (1992); Roeckner et al. (1992); Goddard and Mason (2002).
dRoeckner et al. (1996).
eBacmeister et al. (2000); Pegion et al. (2000); Schubert et al. (2002).
fKinter et al. (1988); DeWitt (1996); Schneider (2002).

1788 DECEMBER 2003|

(e.g., Murphy 1973; Wilks 1995), and diagrams such
as those shown in Fig. 5 were used in the evaluation
of the IRI’s Net Assessment forecasts (Wilks and
Godfrey 2002) and the forecasts of the NOAA/CPC
(Wilks 2000). Reliability refers to the correspondence
between forecast probabilities for a given category
(above, near, or below normal) and the relative fre-
quencies of occurrence of the subsequent observations
in the given category over a sufficient sample of cases.
In such diagrams, the 45° dashed line represents per-
fect resolution and reliability, in which observed rela-
tive frequencies match forecast probabilities over the
full range of forecast probabilities. Additional detail
is provided in the caption of Fig. 5. The 4-yr period
was strongly dominated by above-normal tempera-
ture as defined by the 30-yr normal in effect, as this
category was observed more than 70% of the time (in-
dicated by the green asterisk on the vertical axis) as
opposed to the climatologically expected 33%.

While both the issued IRI and the
multimodel ensemble forecast sets
gave considerably higher probabilities
for above normal than expected long-
term (roughly 40%–50%), they fell
short of what occurred. This bias ap-
pears in the reliability diagrams as an
overall vertical displacement of the
curve from the 45° line, in which most
of the points are located above (below)
the 45° line in the diagram for above-
(below) normal forecasts. The bias of
the multimodel ensemble is somewhat
smaller than that of the IRI’s issued
forecasts, particularly for below-nor-
mal temperature. In the multimodel
combination plots, the blue curves and
regression lines show results when
forecasts of the three AGCMs are
combined with equal weights. Equal
weighting is seen to give results simi-
lar to those using the more sophisti-
cated methods, except that the cool
bias is reduced more using equal
weights. More is said about this below.

When the slope of the reliability
curve is shallower than that of the 45°
line, overconfidence is indicated in the
forecasts. Some overconfidence is
present both in the probabilities in the
IRI’s issued forecasts and in the
multimodel ensemble predictions, for
forecasts for above- and below-normal
categories.2 In other words, increases in

the forecast probability for a given category of tempera-
ture usually correspond to somewhat lesser increases
in the probability of actually observing that category.
An exception is seen in the multimodel predictions
for below-normal temperature, but only for some of
the high forecast probabilities.

As compared with the IRI’s Net Assessment fore-
casts and the multimodel ensemble forecasts, the re-

FIG. 3. Illustration of the IRI’s forecast map graphic used since Jun 2001.

2 Reliability results for the near-normal category are not shown
because little forecast skill was indicated for that category. This
has been found repeatedly in previous studies (e.g., van den
Dool and Toth 1991), and is related to the fact that overall shift-
ing in the forecast probability distribution toward below or
above normal is what is relatively most predictable, as opposed
to a narrowing of the distribution, which is usually not size-
able. Large shifting can reduce the probability of the near-nor-
mal category, but changes probabilities in the two outer cat-
egories far more substantially.

2.5-deg precip 
2-deg temp 

(matching NOAA CMAP &  
CAMS resp.)

Barnston, Mason, Goddard, DeWitt & Zebiak (BAMS, 2003) 



 Three additional AGCMs were added to the EPS in 2001
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T HE ORIGINAL IRI FORECAST SYSTEM.
The International Research Institute (IRI) for
Climate Prediction began issuing seasonal fore-

casts of global precipitation and temperature in late
1997, consisting of a forecast for the upcoming two
consecutive 3-month periods (Mason et al. 1999a).
Forecasts were issued quarterly, for the seasons of
January–March, April–June, etc. The IRI’s final issued
forecasts have been called “Net Assessments.” All of
the IRI’s forecasts, including those most current, can
be found online at http://iri.columbia.edu/climate/fore-
cast/net_asmt/.

As described in Mason et al. (1999a) and Goddard
et al. (2003a), the IRI’s approach to making forecasts

has been a two-tiered process in which a prediction
is first made for the sea surface temperature (SST) in
the global oceans, and then the SST prediction is used
as a driver of a forecast for the atmospheric climate.
The climate forecasts are issued as probabilities of
each of three equiprobable categories (above, near,
and below normal with respect to a recent 30-yr pe-
riod), based largely on a set of ensembles of dynami-
cal atmospheric general circulation model (AGCM)
predictions. A mix of dynamical and statistical mod-
els has been used to construct the SST predictions,
varying by tropical ocean basin. These include (but are
not limited to) the National Centers for Environmen-
tal Prediction (NCEP) coupled ocean–atmosphere
dynamical model for predictions of the tropical Pa-
cific SST (Ji et al. 1998), separate canonical correla-
tion analysis (CCA) predictions for the tropical At-
lantic and Indian Oceans, and damped persistence for
the extratropical oceans with 3 months e-folding time.
These predictions were smoothly blended at their geo-
graphical interfaces. For the first forecast season, in
addition to such evolving SST predictions, the ob-
served SST anomalies from the most recently com-
pleted calendar month were used as another SST pre-
diction scenario—that is, SST anomaly persistence.

As a supplement to Goddard et al. (2003a) that
details the skills of the IRI’s climate forecasts during
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ensembling. This is consistent with
findings of others that, following the
removal of biases in individual mod-
els, multimodel ensembling typically
produces skills equal to or just slightly
better than the skill of the most skill-
ful AGCM in the set (Pavan and
Doblas-Reyes 2000; Palmer et al. 2000;
Peng et al. 2002).

A reason for the better perfor-
mance of the multimodel ensemble
predictions than the IRI’s issued fore-
casts for temperature has to do with
the disappointing performance of a
statistical tool—the ENSO-based
probabilistic composites—that con-
tributed to the issued forecasts. (How-
ever, as discussed below, this same tool
bolstered the skills of the precipitation
forecasts.) Indeed, Goddard et al.
(2003a) reported that the AGCMs
were the highest scoring input tools to
the IRI’s temperature forecasts over
the 4-yr period.

Figure 5 contains a set of reliabil-
ity diagrams for three versions of the
temperature forecasts over the 4-yr
period: the IRI’s Net Assessment fore-
casts, the objective multimodel en-
semble, and one of the AGCMs. The
concept of reliability is well developed

FIG. 2. Illustration of the IRI’s forecast map graphic used before Jun
2001.

TABLE 1. The AGCMs used at IRI’s forecast operation in Oct 2001, with their associated refer-
ences. Revision of this list by Aug 2003 is indicated in Fig. 1.

Model Where model was developed Where model is run monthly

CCM 3.2 NCAR, Boulder, COa IRI, Palisades, NY
NCEP/MRF9 NCEP, Washington, DCb QDNR, Queensland, Australia
ECHAM 3.6 Max Planck Institute, Hamburg, Germanyc IRI, Palisades, NY
ECHAM 4.5 Max Planck Institute, Hamburg, Germanyd IRI, Palisades, NY
NSIPP NASA GSFC, Greenbelt, MDe NASA GSFC, Greenbelt, MD
COLA Center for Ocean–Land–Atmosphere COLA, Calverton, MD

Studies (COLA), Calverton, MDf

aHack et al. (1998); Hurrell et al. (1998); Kiehl et al. (1998).
bKumar et al. (1996); Livezey et al. (1996).
cDeutsches Klimarechenzentrum (1992); Roeckner et al. (1992); Goddard and Mason (2002).
dRoeckner et al. (1996).
eBacmeister et al. (2000); Pegion et al. (2000); Schubert et al. (2002).
fKinter et al. (1988); DeWitt (1996); Schneider (2002).

Barnston, Mason, Goddard, DeWitt & Zebiak 
(BAMS, 2003) 



Probabilistic Skill
IRI Annual Report, 2003–04
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Reliable forecast probabilities


Advantage of MME



ENSO OutlooksENSO QUICK LOOK December 18, 2003
A monthly summary of the status of El Niño, La Niña and the Southern Oscillation, or ”ENSO”

Overall conditions in the tropical Pacific are mostly above average, although not strongly enough to
qualify as El Niño conditions. Based on the latest observations and forecasts, while chances of El Niño
are slightly above their average, it is most likely that near-neutral conditions will continue through the
remainder of 2003 and into the first half of 2004.

Current ENSO Forecast Summary1

Forecast Period: Apr. 2004 − Jun. 2004

Probability of El Niño

Probability of La Niña

Probable Magnitude 
of Event
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Historically Speaking

El Niño and La Niña events tend to develop during the period Apr-Jun and they:
- Tend to reach their maximum strength during Dec-Feb
- Typically persist for 9-12 months, though occasionally persisting for up to 2 years
- Typically recur every 2 to 7 years

1Probability of an El Niño refers to the likelihood of a sustained (that is, over several seasons) warming
across a broad region of the eastern and central tropical Pacific, not just along coastal South America.

2Based on sea surface temperature departures from the long-term average over the ”NINO3.4” region
(120-170W, 5S-5N).

“The plume came about because of the push, organized by Antonio Moura and Chet Ropelewski, called 
“preparing for the next El Nino”. A few years had gone by since the 1997-98 event and the IRI started 
getting scared that another El Nino might come and the IRI would be caught off guard with nothing to say 
about it, and no visible forecasts of it.” Tony Barnston



Today’s IRI/CPC Plume

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/



Model-based Prediction Distributions

Barnston & Tippett.



NMME-based Seasonal Forecasts - Since April 2017
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This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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the remainder of a distribution), q1/3, and upper tercile,
q2/3, of the climatological distribution of a predictand.
The two threshold probabilities, p1/3 = Pr {V ≤ q1/3)
and p2/3 = Pr {V ≤ q2/3) would be forecast using the
two logistic regression functions ln[p1/3/(1 − p1/3)] =
f1/3(x) and ln[p2/3/(1 − p2/3)] = f2/3(x). Unless the
regression functions f1/3(x) and f2/3(x) are exactly par-
allel (i.e. they differ only with respect to their intercept
parameters, b0) they will cross for some values of the pre-
dictor(s) x, leading to the nonsense result of p1/3 > p2/3,
implying Pr {q1/3 < V < q2/3} < 0. Other problems with
this approach are that estimating probabilities correspond-
ing to threshold quantiles for which regressions have not
been fitted requires some kind of interpolation, yet fitting
many prediction equations requires that a large number
of parameters be estimated.

All of these problems can be alleviated if a well-
fitting regression can be estimated simultaneously for all
forecast quantiles. A potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(q) of the threshold quantile q, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

p(q) = exp[f (x) + g(q)]
1 + exp[f (x) + g(q)]

(5)

or,

ln
[

p(q)

1 − p(q)

]
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
b0

∗(q) increase monotonically with the threshold quan-
tile, q:

ln
[

p(q)

1 − p(q)

]
= b0 + g(q) + b1x1 + b2x2 + · · · + bKxK

= b∗
0(q) + b1x1 + b2x2 + · · · + bKxK (7)

The question from a practical perspective is whether
a functional form for g(q) can be specified, for which
Equation (5) provides forecasts of competitive quality to
those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same
as those used in Wilks and Hamill (2007). Ensemble
forecasts have been taken from the Hamill et al. (2006)
reforecast dataset, which contains retrospectively recom-
puted, 15-member ensemble forecasts beginning in Jan-
uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-
izontal resolution) version of the U.S. National Centers
for Environmental Prediction Global Forecasting Model
(GFS) (Caplan et al., 1997). Precipitation forecasts for
days 6–10 were aggregated to yield medium-range
ensemble forecasts for this lead time, through Febru-
ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast
precipitation at 19 U.S. first-order National Weather Ser-
vice stations: Atlanta, Georgia (ATL); Bismarck, North
Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,
New York (BUF); Washington, DC (DCA); Denver,
Colorado (DTW); Great Falls, Montana (GTF); Los
Angeles, California (LAX); Miami, Florida (MIA); Min-
neapolis, Minnesota (MSP); New Orleans, Louisiana
(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona
(PHX); Seattle, Washington (SEA); San Francisco, Cali-
fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,
Missouri (STL). These subjectively chosen stations pro-
vide reasonably uniform and representative coverage of
the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-
cipitation were made for the seven climatological quan-
tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33
(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90
(upper decile) and q0.95 (95th percentile); estimated using
the full 26 year observation data set. The verification
data were constructed from running 5-day totals of the
midnight-to-midnight daily precipitation accumulations.
The climatological quantiles were tabulated locally, both
by forecast date and individually by verifying station, in
order to avoid artificial skill deriving from correct ‘fore-
casting’ of variations in climatological values (Hamill and
Juras, 2006). For many locations and times of year, two
or more of these seven quantiles of 5-day accumulated
precipitation are zero, and in these cases only the sin-
gle zero quantile corresponding to the largest probability
was used in regression fitting and verification of fore-
casts. For example, if 25% of the climatological 5-day
precipitation values for a particular location and date are
zero, then both q0.05 and q0.10 are equal to 0 mm, but
only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast
equations were fitted using 1, 2, 5, 15, and 25 years
of training data, and evaluated using cross validation
so that all forecasts are out-of-sample. Separate forecast
equations were fitted for each day of the 26 year data
period, using a training-data window of ± 45 days around
the forecast date. To the extent possible, training years
were chosen as those immediately preceding the year
omitted for cross validation, and to the extent that this
was not possible the nearest subsequent years were used.
For example, equations used to forecast from 1 March,
1980 using 1 year of training data were fitted using data
from 15 January through 15 April, 1979.

These procedures were followed both for individual
logistic regressions, Equation (1), and the unified formu-
lation in Equation (5), although as noted above only one
quantile corresponding to zero accumulated precipitation
was forecast and verified in any one instance. Only a sin-
gle ensemble predictor, the square-root of the ensemble
mean, was used in the function f (x):

f (x) = b0 + b1

√
xens (8)

Copyright © 2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
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Applied at each grid point,  
using forecast ensemble mean.



Counting Extended Logistic Regression

RPSS Skill of NMME-based Precipitation Hindcasts  
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Evolution of IRI’s Real-time skill
Precipitation Temperature

https://iri.columbia.edu/our-expertise/climate/forecasts/verification/
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