

Satellite Rainfall Products: Joel Michaelsen's Humanitarian Legacy – CHIRPS Pete Peterson Climate Hazards Center UCSB

Climate Diagnostics and Prediction Workshop 2018.10.24 UCSB, Santa Barbara, Ca.

> pete@geog.ucsb.edu chg.ucsb.edu/data/chirps

Climate Hazards center InfraRed Precipitation with Stations CHIRPS

• CHIRPS developed by Famine Early Warning Systems Network (FEWS NET)

- CHIRPS designed for agricultural drought monitoring.
- CHIRPS process as transparent as possible.
 - Lots of supporting diagnostic files, open to adding more.
- Adding station data improves CHIRPS.
 - Reporting crisis.
- CHIRPS v2.0 downloaded from 1165 unique IP addresses in September 2018.
- Three products,
 - CHIRP satellite, no stations, pentads w/ 2 day lag
 - CHIRPS prelim: CHIRP + GTS/Conagua stations, pentads w/ 2 day lag
 - CHIRPS final: uses all stations, pentad, monthly w/~3 week lag

EARLY WARNING SYSTEMS

fews.net

Ukraine

FEWS NET provides objective, evidence-based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian crises.

Drought Monitoring

Table 1. Non-exhaustive overview of freely available (quasi-)global gridded P datasets. If a particular dataset is available in different spatial resolutions or in different variants we only listed the "best" one (e.g., we list the gauge-adjusted 3B42 variant of TMPA rather than the non-gauge-adjusted 3B42RT variant). The datasets are sorted first by source and then alphabetically by short name. MSWEP has been added for the sake of completeness.

	Short name	Full name and details	Data source(s)	Spatial resolution	Spatial coverage	Temporal resolution	Temporal coverage	Reference(s)
1	CPC Unified	Climate Prediction Center (CPC) Unified	Gauge	0.5°a	Global	Daily	1979-present	Xie et al. (2007), Chen et al. (2008)
2	CRU	Climatic Research Unit (CRU) Time-Series (TS)	Gauge	0.5°	Global	Monthly	1901-2014	Harris et al. (2013)
3	GPCC	Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis and First Guess	Gauge	0.5° ^b	Global	Monthly	1901-present	Schneider et al. (2014)
4	PREC/L	PRECipitation REConstruction over Land (PREC/L)	Gauge	0.5°	Global	Monthly	1948-present	Chen et al. (2002)
5	UDEL	University of Delaware (UDEL)	Gauge	0.5°	Global	Monthly	1901–2014	Matsuura and Willmott (2009)
6	CHIRPS	Climate Hazards group Infrared Precipitation with Stations (CHIRPS)	Gauge, satellite	0.05°	50° N–50° S	Daily	1981-present	Funk et al. (2015a)
7	CMORPH	CPC MORPHing technique (CMORPH)	Gauge, satellite	0.25	60° N–60° S	Daily	1998–present	Joyce et al. (2004)
8	GPCP-1DD	(1DD) Combination	Gauge, satellite	1°	Global	Daily	1996–2015	Huffman et al. (2001)
9	GSMaP-MVK	Global Satellite Mapping of Precipitation (GSMaP) Moving Vector with Kalman (MVK)	Gauge, satellite	0.1°	$60^{\circ} \text{ N}-60^{\circ} \text{ S}$	Hourly	2000-present	Iguchi et al. (2009)
10	IMERG	Integrated Multi-satellitE Retrievals for GPM (IMERG)	Gauge, satellite	0.1°	60° N-60° S	30 min	2014-present	Huffman et al. (2014)
11	PERSIANN-CDR	Precipitation Estimation from Remotely Sensed Information using	Gauge, satellite	0.25°	60° N-60° S	6 hourly	1983-2012	Ashouri et al. (2015)
		Artificial Neural Networks (PERSIANN) Climate Data Record (CDR)						
12	TMPA 3B42	TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42	Gauge, satellite	0.25°	50° N–50° S	3 hourly	1998-present	Huffman et al. (2007)
13	MERRA-Land	Modern Era Retrospective-Analysis for Research and Applications (MERRA)-Land	Gauge, reanalysis	$0.5^\circ imes 0.67^\circ$	Global	Hourly	1979–present	Reichle et al. (2011)
14	PFD	Princeton global meteorological Forcing Dataset	Gauge, reanalysis	0.25°	Global	3 hourly	1948-2012	Sheffield et al. (2006)
15	WFDEI	WATCH Forcing Data ERA-Interim (WFDEI)	Gauge, reanalysis	0.25°	Global	3 hourly	1979–2014	Weedon et al. (2014)
16	NCEP-CFSR	National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR)	Reanalysis	0.3125°	Global	Hourly	1979–2010	Saha et al. (2010)
17	ERA-Interim	European Centre for Medium-range Weather Forecasts ReAnalysis Interim (ERA-Interim)	Reanalysis	0.25°°c	Global	3 hourly	1979–2014	Dee et al. (2011)
18	JRA-55	Japanese 55-year ReAnalysis (JRA-55)	Reanalysis	1.25°	Global	3 hourly	1959–present	Kobayashi et al. (2015)
19	CHOMPS	Cooperative Institute for Climate Studies (CICS) High-Resolution Optimally Interpolated Microwave Precipitation from Satellites (CHOMPS)	Satellite	0.25°	60° N–60° S	Daily	1998–2007	Joseph et al. (2009)
20	SM2RAIN-ASCAT	Based on Advanced Scatterometer (ASCAT) data (Brocca et al., 2016)	Satellite	0.5°	Global	Daily	2007-2015	Brocca et al. (2014)
21	CMAP	CPC Merged Analysis of Precipitation (CMAP)	Gauge, satellite, reanalysis	2.5°	Global	5 day	1979-present	Xie and Arkin (1996, 1997)
22	MSWEP	Multi-Source Weighted-Ensemble Precipitation (MSWEP)	Gauge, satellite, reanalysis	0.25°	Global	3 hourly	1979–2015	This study

a 0.25° spatial resolution for the conterminous USA. b 1° spatial resolution for 2014-present. c ~ 80 km effective spatial resolution (i.e., the resolution of the employed atmospheric model).

MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data (HESS 2017)

Hylke E. Beck1, Albert I. J. M. van Dijk2, Vincenzo Levizzani3, Jaap Schellekens4, Diego G. Miralles5,6, Brecht Martens5, and Ad de Roo1

Things to consider when choosing a rainfall products

Latency: flash floods / trends Resolution: scale of interest Bias: agroclimatology PoR: Index Insurance homogeneity: trends/anomalies added stations: fine tuning

Overview of CHIRPS process

1) Create historic climatology **CHPclim.** captures spatial variability

&

- 2) Convert IR data to precipitation estimate IRP
 Use TRMM-V7 data to determine coefficients b₀ and b₁
 IRP = b₀ + b₁*(Cold Cloud Duration Percent)
- Apply time variability of IRP to CHPclim to make CHIRP
 CHIRP = CHPclim * (IRP %normal)
- 4) Blend in station observations with CHIRP to make CHIRPS

Convert IR data to precipitation estimate IRP at the pentad time step.

IRP = b₀ + b₁*(Cold Cloud Duration Percent)

Y axis: Each dot is the daily rain rate [mm/day] based on TRMM-V7 data for given 0.25 degree pixel and pentad.

X axis: Each dot is CCD calculated over all (240) half-hourly IR values for given pixel and pentad.

Station data Quality Control

- Badness plots
- GSOD duplicates
- Too big/ too small
- False zeroes (GTS, GSOD)
- zscore out of bounds (> 4)
- > 2000 or > 5 * CHIRP
- Reality checks

Station sources last month GHCN-v2 GHCN-daily fGTS fGSOD Ethiopia IDEAM Conagua SASSCAL SWALIM

Reality checks using Early Warning Explorer (EWX) chg-ewxtest.chg.ucsb.edu

Rchecks legend

chgwiki.chg.ucsb.edu/wiki/CHIRPS_Reality

Somalia SWALIM and Ethiopia NMA contributions to CHIRPS: SWALIM and Ethiopia NMS stations were highly influential for CHIRPS- reports in some areas of southern Somalia, southern Ethiopia, and eastern Kenya were – 100mm lower than CHIRP estimates. Result is that while CHIRPS shows above average precip across region, some of these areas anaomiles are weaker than otherwise would be based on satellite estimate (e.g. –54 mm vs 180 mm).

China Statons were important for correcting CHIPP estimates in certrah-anorthem china and southeastem china. 4:00 statons reported contrasting anomales to CHIPP, will above average rainfall in a certrah-conterm china and southeastem china. 4:00 statons reported contrasting average across most of southern china. Could not find news reports to validate, but number of stations in agreement give support for CHIPPS accuracy.

Southeast Asia Stations were important for correcting CHIRP to above average rainfall in Thailand and northern area of Laos. ~25 stations show general agreement about this.

CHRPS improvements During Pichecks on the first version of CHIRPS Final, it was destilled that were substantially lever stations than usual n east Africa and that CHIRP was oversettimating rainfall in some areas. The combination of these factors gave concern that it might be reducing accuracy of CHIRPS data this month. Reheckers and Pete Pieterson, data curator, worked together to identify why so few stations were getting through (optimal body). After these exists that the setting in a more stations theip included and other positive outcomes, the final CHIRPS That is regarded with confidence. Including of a higher number of stations helped correct CHIRP oversetimation in some areas e.g. coastal Kenya nove shows - Shorm as opposed to -300mm, which is more in line with stations, and thismaping that were loss that in the chiral councils, and areas of these definits are better station coverage in east Africa in April 2016, identification of a screening step that needs to be evaluated more collexly, and a stations were in support of CHIRPS estimations, which is always grate area. The association for the instal lack of stations was a singertificet HIRPS. The hypothesis is that to factors in processing reduced number of days with reports to ladive the enquired threshold give that databations. There, there may have been days where reports of them were incorred by indentified as talker, contentially bit of externally high CHIRPS. The hypothesis that there were no GTS reports on the GTS tables for end day (420), which counted agains the monthly tably for the faultion. The two time may have been days 40.0 in the mean indentifies at lates, contentially bit of externally high CHIRPS. The hypothesis that where reports of thom were incorred by indentified as a late, contentially bit of externally high CHIRPS. The hypothesis the planed CHIRPS 40.0. In the mean mean faunce and the stations that will be realised to processing revent that processing leatures. The hypothesis of the plane CHIRPS 40.0. In the meant may be incordaded

Contributors: Laura Harrison, Will Turner, Marty Landsfeld

Station center value = station_seqnum in CSCD database

Reporting crisis

Met Services under reporting. Tried to monetize data, but nobody paid. Gauges break down, not replaced, Lag in reporting. GPCC sees similar decline.

Open Question: How do we get more station data into our precipitation products? Measuring Precipitation from Space EURAINSAT and the Future 2007 Editors: Levizzani, V., Bauer, P., Turk, F. Joseph 52 papers

CHIRPS v2.1

- New CHPclim
 - Starts with 29k locations used in current CHIRPS,
 - adds another 1000+ from new sources,
 - adds in 72k GPCC values and
 - finishes with 25k FAO values
 - Uses moving window across whole globe, not with 50+ separate tiles
- Fixed degenerative CCD locations
- New CHIRP calculation has extra correction term to fix general underestimated low vales and overestimated high values stations
 - CHIRP = CHPclim * (IRP %normal) + correction
- No duplicates in the station blending step
- Available..... soon!

CHIRTSmax: monthly Tmax CDR

- 0.05[°] x 0.05[°] spatial resolution
- Monthly time step
- Over land
- 60S-70N latitude range
- 1983-2016 temporal range
- Next will go from a Climate Data Record to a monitoring product
- Take a look at CHIRTSmax here -chg-ewxtest.chg.ucsb.edu

CHIRTSmax standardized anomaly for December 2016

Food security emergency in central/eastern Ethiopia follows worst drought in more than 50 years http://www.fews.net/east-africa/ethiopia/alert/december-4-2015

Daily CHIRPS in FEWS NET Land Data Assimilation System (FLDAS) provides Soil Moisture

Arsi Assessment: *"Both Belg and Kiremt rainfall were not favorable for seasonal agricultural activities due to high moisture Deficit ... Signs of malnutrition are increasing"*

- Getachew Abate (FEWS NET) and Kelbessa Beyene (WFP)

Standardized Soil Moisture Anomalies

Closing thoughts

- Precipitation not a winner-take-all space.
 - Many precipitation datasets, what's your bulls-eye?
- CHIRPS does what it was designed to do very well.
 - High resolution, low latency, low bias, homogeneous, long period of record (38 years), good # of stations.
 - Climatology + Cold Cloud Duration IRP + station data
 - CHIRPS bridges the gap between long term climate records and near term drought monitoring.
 - New version 2.1 will be even better
- Reporting crisis: How to get more stations reporting?
- There are people behind the pixels.

Thank You Joel!

EOT

When I was a kid, Pluto was a planet!

Colombia IDEAM SON

SON time series stats

Source	correlation	MAE
CHIRP	0.39	65.7
CHIRPS	0.97	38.3
CFS	0.76	221.0
CPC-Unif	0.45	154.0
ECMWF	0.76	203.0
GPCC	0.96	20.6

\mathbb{Z}

338 validation stations

The Challenge of Geostationary Satellite Data

chg.geog.ucsb.edu/tools/geoclim

Blend station information with satellite data to create improved datasets

Analyze seasonal trends and/or historical climate data

Analyze drought for a selected region by calculating the standardized precipitation index (SPI)

Create visual representations of climate data, create scripts (batch files) to quickly and efficiently analyze large quantities of climate data

View and/or edit shapefiles and raster files, and extract statistics from raster datasets to create time series. (video- GeoCLIM overview)