CLIMATE DIAGNOSTICS BULLETIN

JANUARY 2011

NEAR REAL-TIME OCEAN / ATMOSPHERE Monitoring, Assessments, and Prediction

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Weather Service
National Centers for Environmental Prediction
Chief Editor: Gerald D. Bell
Editors: Wei Shi, Michelle L’Heureux, and Michael Halpert
Bulletin Production: Wei Shi

External Collaborators:
- Center for Ocean-Atmospheric Prediction Studies (COAPS)
- Cooperative Institute for Research in the Atmosphere (CIRA)
- Earth & Space Research
- International Research Institute for Climate and Society (IRI)
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO)
- Lamont-Doherty Earth Observatory (LDEO)
- NOAA-CIRES, Climate Diagnostics Center
- NOAA-AOML, Atlantic Oceanographic and Meteorological Laboratory
- NOAA-NESDIS-STAR, Center for Satellite Applications and Research
- NOAA-NDBC, National Data Buoy Center
- Scripps Institution of Oceanography

Software: Most of the bulletin figures generated at CPC are created using the Grid Analysis and Display System (GrADS).
- Climate Diagnostics Bulletin available on the World Wide Web

The CDB is available on the World Wide Web. The address of the online version of the CDB is:

http://www.cpc.ncep.noaa.gov/products/CDB

If you have any problems accessing the bulletin, contact Dr. Wei Shi by E-mail:

Wei.Shi@noaa.gov
Table of Contents

TROPICS
 Highlights page 6
 Table of Atmospheric Indices page 7
 Table of Oceanic Indices page 8

FIGURE

Time Series
 Southern Oscillation Index (SOI) T1
 Tahiti and Darwin SLP Anomalies T1
 OLR Anomalies T1
 CDAS/Reanalysis SOI & Equatorial SOI T2
 200-hPa Zonal Wind Anomalies T3
 500-hPa Temperature Anomalies T3
 30-hPa and 50-hPa Zonal Wind Anomalies T3
 850-hPa Zonal Wind Anomalies T4
 Equatorial Pacific SST Anomalies T5

Time-Longitude Sections
 Mean and Anomalous Sea Level Pressure T6
 Mean and Anomalous 850-hPa Zonal Wind T7
 Mean and Anomalous OLR T8
 Mean and Anomalous SST T9
 Pentad SLP Anomalies T10
 Pentad OLR Anomalies T11
 Pentad 200-hPa Velocity Potential Anomalies T12
 Pentad 850-hPa Zonal Wind Anomalies T13
 Anomalous Equatorial Zonal Wind T14
 Mean and Anomalous Depth of the 20°C Isotherm T15

Mean & Anomaly Fields
 Depth of the 20°C Isotherm T16
 Subsurface Equatorial Pacific Temperatures T17
 SST T18
 SLP T19
 850-hPa Vector Wind T20
 200-hPa Vector Wind T21
 200-hPa Streamfunction T22
 200-hPa Divergence T23
 200-hPa Velocity Potential and Divergent Wind T24
 OLR T25
 SSM/I Tropical Precipitation Estimates T26
 Cloud Liquid Water T27
 Precipitable Water T28
 Divergence & E-W Divergent Circulation T29 - T30
 Pacific Zonal Wind & N-S Divergent Circulation T31 - T32

Appendix 1: Outside Contributions
 Tropical Drifting Buoys A1.1
 Thermistor Chain Data A1.2
 TAO/TRITON Array Time-Longitude Sections A1.3 - A1.4
FIGURE

East Pacific SST and Sea Level A1.5
Pacific Wind Stress and Anomalies A1.6
Satellite-Derived Surface Currents A1.7 - A1.8

FORECAST FORUM
Discussion page 49
Canonical Correlation Analysis Forecasts F1 - F2
NCEP Coupled Model Forecasts F3 - F4
NCEP Markov Model Forecasts F5 - F6
LDEO Model Forecasts F7 - F8
Linear Inverse Modeling Forecasts F9 - F10
Scripps/MPI Hybrid Coupled Model Forecast F11
ENSO-CLIPER Model Forecast F12
Model Forecasts of Niño 3.4 F13

EXTRATROPICS
Highlights page 64
Table of Teleconnection Indices page 66

Global Surface Temperature E1
Temperature Anomalies (Land Only) E2
Global Precipitation E3
Regional Precipitation Estimates E4 - E5
U. S. Precipitation E6

Northern Hemisphere
Teleconnection Indices E7
Mean and Anomalous SLP E8
Mean and Anomalous 500-hPa heights E9
Mean and Anomalous 300-hPa Wind Vectors E10
500-hPa Persistence E11
Time-Longitude Sections of 500-hPa Height Anomalies E12
700-hPa Storm Track E13

Southern Hemisphere
Mean and Anomalous SLP E14
Mean and Anomalous 500-hPa heights E15
Mean and Anomalous 300-hPa Wind Vectors E16
500-hPa Persistence E17
Time-Longitude Sections of 500-hPa Height Anomalies E18

Stratosphere
Height Anomalies S1 - S2
Temperatures S3 - S4
Ozone S5 - S6
Vertical Component of EP Flux S7
Ozone Hole S8

Appendix 2: Additional Figures
Arctic Oscillation and 500-hPa Anomalies A2.1
Snow Cover A2.2
Tropical Highlights - January 2011

La Niña continued during January 2011 as sea surface temperatures (SSTs) remained well below average across the equatorial Pacific Ocean (Fig. T18). The latest monthly Niño indices were -1.7°C for the Niño 3.4 region and -0.7°C for the Niño 1+2 region (Table T2, Fig. T5). (Please note that starting with this January 2011 issue, the anomalies are departures from the 1981-2010 base period means.) Consistent with these conditions, the oceanic thermocline (measured by the depth of the 20°C isotherm) remained much shallower than average across the central and eastern equatorial Pacific (Figs. T15 and T16), with sub-surface temperatures reaching 1°C to 4°C below average in these regions (Fig. T17).

Also during January, the equatorial low-level easterly trade winds remained stronger than average over the western and central Pacific (Table T1, Fig. T20), while convection remained enhanced over Indonesia and suppressed across the western and central equatorial Pacific (Figs. T25 and E3). Collectively, these oceanic and atmospheric anomalies reflect the mature phase of La Niña.

For the latest status of the ENSO cycle see the ENSO Diagnostic Discussion at:
<table>
<thead>
<tr>
<th>MONTH</th>
<th>SLP ANOMALIES</th>
<th>TAHI T minus DARWIN SOI</th>
<th>850-hPa ZONAL WIND INDEX</th>
<th>200-hPa WIND INDEX</th>
<th>OLR Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 11</td>
<td>2.7</td>
<td>-1.6</td>
<td>2.3</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>DEC 10</td>
<td>2.9</td>
<td>-2.5</td>
<td>2.9</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>NOV 10</td>
<td>2.0</td>
<td>-0.4</td>
<td>1.3</td>
<td>2.0</td>
<td>1.1</td>
</tr>
<tr>
<td>OCT 10</td>
<td>1.7</td>
<td>-1.5</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>SEP 10</td>
<td>2.7</td>
<td>-1.4</td>
<td>2.2</td>
<td>2.1</td>
<td>0.6</td>
</tr>
<tr>
<td>AUG 10</td>
<td>2.2</td>
<td>-1.2</td>
<td>1.8</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>JUL 10</td>
<td>2.3</td>
<td>-1.0</td>
<td>1.8</td>
<td>1.7</td>
<td>0.7</td>
</tr>
<tr>
<td>JUN 10</td>
<td>0.9</td>
<td>0.3</td>
<td>0.4</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>MAY 10</td>
<td>0.4</td>
<td>-1.3</td>
<td>0.9</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>APR 10</td>
<td>2.0</td>
<td>-0.3</td>
<td>1.2</td>
<td>0.6</td>
<td>-0.2</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-0.7</td>
<td>0.6</td>
<td>-0.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>FEB 10</td>
<td>-1.8</td>
<td>1.0</td>
<td>-1.5</td>
<td>-0.6</td>
<td>-1.2</td>
</tr>
<tr>
<td>JAN 10</td>
<td>-2.8</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

TABLE T1 - Atmospheric index values for the most recent 12 months. Indices are standardized by the mean annual standard deviation, except for the Tahiti and Darwin SLP anomalies which are in units of hPa. Positive (negative) values of 200-hPa zonal wind index imply westerly (easterly) anomalies. Positive (negative) values of 850-hPa zonal wind indices imply easterly (westerly) anomalies. Anomalies are departures from the 1981-2010 base period means.
<table>
<thead>
<tr>
<th>MONTH</th>
<th>PACIFIC SST</th>
<th>ATLANTIC SST</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIÑO 1+2 0-10°S 90°W-80°W</td>
<td>NIÑO 3 5°N-5°S 150°W-90°W</td>
<td>NIÑO 3.4 5°N-5°S 170°W-120°W</td>
</tr>
<tr>
<td>JAN 11</td>
<td>-0.7 23.9</td>
<td>-1.4 24.2</td>
<td>-1.7 24.9</td>
</tr>
<tr>
<td>DEC 10</td>
<td>-1.4 21.4</td>
<td>-1.7 23.5</td>
<td>-1.6 24.9</td>
</tr>
<tr>
<td>NOV 10</td>
<td>-1.6 20.0</td>
<td>-1.6 23.4</td>
<td>-1.6 25.1</td>
</tr>
<tr>
<td>OCT 10</td>
<td>-1.8 19.1</td>
<td>-1.7 23.3</td>
<td>-1.7 25.0</td>
</tr>
<tr>
<td>SEP 10</td>
<td>-1.5 18.9</td>
<td>-1.3 23.6</td>
<td>-1.7 25.1</td>
</tr>
<tr>
<td>AUG 10</td>
<td>-1.4 19.3</td>
<td>-1.1 23.9</td>
<td>-1.3 25.5</td>
</tr>
<tr>
<td>JUL 10</td>
<td>-1.5 20.1</td>
<td>-1.1 24.5</td>
<td>-1.1 26.1</td>
</tr>
<tr>
<td>JUN 10</td>
<td>-0.2 22.6</td>
<td>-0.7 25.8</td>
<td>-0.7 27.0</td>
</tr>
<tr>
<td>MAY 10</td>
<td>0.1 24.3</td>
<td>-0.1 27.0</td>
<td>-0.2 27.7</td>
</tr>
<tr>
<td>APR 10</td>
<td>0.6 26.1</td>
<td>0.6 28.1</td>
<td>0.6 28.4</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-0.3 26.2</td>
<td>0.6 27.7</td>
<td>1.1 28.3</td>
</tr>
<tr>
<td>FEB 10</td>
<td>0.0 26.1</td>
<td>0.8 27.1</td>
<td>1.2 27.9</td>
</tr>
<tr>
<td>JAN 10</td>
<td>0.4 24.8</td>
<td>1.0 26.6</td>
<td>1.5 28.1</td>
</tr>
</tbody>
</table>

TABLE T2. Mean and anomalous sea surface temperature (°C) for the most recent 12 months. Anomalies are departures from the 1981–2010 adjusted OI climatology (Smith and Reynolds 1998, *J. Climate*, 11, 3320-3323).
FIGURE T1. Five-month running mean of the Southern Oscillation Index (SOI) (top), sea-level pressure anomaly (hPa) at Darwin and Tahiti (middle), and outgoing longwave radiation anomaly (OLR) averaged over the area 5N-5S, 160E-160W (bottom). Anomalies in the top and middle panels are departures from the 1981-2010 base period means and are normalized by the mean annual standard deviation. Anomalies in the bottom panel are departures from the 1981-2010 base period means. Individual monthly values are indicated by “x”s in the top and bottom panels. The x-axis labels are centered on July.
FIGURE T2. Three-month running mean of a CDAS/Reanalysis-derived (a) Southern Oscillation Index (RSOI), (b) standardized pressure anomalies near Tahiti (solid) and Darwin (dashed), (c) an equatorial SOI ([EPAC] - [INDO]), and (d) standardized equatorial pressure anomalies for (EPAC) (solid) and (INDO) (dashed). Anomalies are departures from the 1981-2010 base period means and are normalized by the mean annual standard deviation. The equatorial SOI is calculated as the normalized difference between the standardized anomalies averaged between 5°N–5°S, 80°W–130°W (EPAC) and 5°N–5°S, 90°E–140°E (INDO).
FIGURE T3. Five-month running mean (solid lines) and individual monthly mean (dots) of the 200-hPa zonal wind anomalies averaged over the area 5N-5S, 165W-110W (top), the 500-hPa virtual temperature anomalies averaged over the latitude band 20N-20S (middle), and the equatorial zonally-averaged zonal wind anomalies at 30-hPa (red) and 50-hPa (blue) (bottom). In the top panel, anomalies are normalized by the mean annual standard deviation. Anomalies are departures from the 1981-2010 base period means. The x-axis labels are centered on January.
FIGURE T4. Five-month running mean (solid line) and individual monthly mean (dots) of the standardized 850-hPa zonal wind anomaly index in the latitude belt 5N-5S for 135E-180 (top), 175W-140W (middle) and 135W-120W (bottom). Anomalies are departures from the 1981-2010 base period means and are normalized by the mean annual standard deviation. The x-axis labels are centered on January. Positive (negative) values indicate easterly (westerly) anomalies.
FIGURE T5. Nino region indices, calculated as the area-averaged sea surface temperature anomalies (C) for the specified region. The Nino 1+2 region (top) covers the extreme eastern equatorial Pacific between 0-10S, 90W-80W. The Nino-3 region (2nd from top) spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4 region (3rd from top) spans the east-central equatorial Pacific between 5N-5S, 170W-120W. The Nino 4 region (bottom) spans the date line and covers the area 5N-5S, 160E-150W. Anomalies are departures from the 1981-2010 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Monthly values of each index are also displayed in Table 2.
FIGURE T6. Time-longitude section of mean (top) and anomalous (bottom) sea level pressure (SLP) averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 1.0 hPa (top) and 0.5 hPa (bottom). Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T7. Time-longitude section of mean (top) and anomalous (bottom) 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 2 ms$^{-1}$. Blue shading and dashed contours indicate easterlies (top) and easterly anomalies (bottom). Anomalies are departures from the 1981-2010 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T8. Time-longitude section of mean (top) and anomalous (bottom) outgoing longwave radiation (OLR) averaged between 5N-5S. Contour interval is 10 W/m². Dashed contours in bottom panel indicate negative OLR anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T9. Time-longitude section of monthly mean (top) and anomalous (bottom) sea surface temperature (SST) averaged between 5N-5S. Contour interval is 1°C (top) and 0.5°C (bottom). Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1981-2010 base period means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323).
FIGURE T10. Time-longitude section of anomalous sea level pressure (hPa) averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 1 hPa. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T11. Time-longitude section of anomalous outgoing longwave radiation averaged between 5N-5S. Contour interval is 15 Wm$^{-2}$. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T12. Time-longitude section of anomalous 200-hPa velocity potential averaged between 5N–5S (CDAS/Re-analysis). Contour interval is $3 \times 10^6 \text{ m}^2\text{s}^{-1}$. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T13. Time-longitude section of anomalous 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 2 ms$^{-1}$. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010 base period pentad means. The data are smoothed temporally by using a 3-point running average.
FIGURE T14. Equatorial time-height section of anomalous zonally-averaged zonal wind (m s$^{-1}$) (CDAS/Reanalysis). Contour interval is 10 ms$^{-1}$. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T15. Mean (top) and anomalous (bottom) depth of the 20C isotherm averaged between 5N-5S in the Pacific Ocean. Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic observations into an oceanic GCM (Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. AMS 84th Annual Meeting, Seattle, Washington, 11-15). The contour interval is 10 m. Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1981-2010 base period means.
FIGURE T16. Mean (top) and anomalous (bottom) depth of the 20°C isotherm for JAN 2011. Contour interval is 40 m (top) and 10 m (bottom). Dashed contours in bottom panel indicate negative anomalies. Data are derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be submitted to BAMS). Anomalies are departures from the 1981–2010 base period means.
FIGURE T17. Equatorial depth-longitude section of ocean temperature (top) and ocean temperature anomalies (bottom) for JAN 2011. Contour interval is 1°C. Dashed contours in bottom panel indicate negative anomalies. Data are derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be submitted to BAMS). Anomalies are departures from the 1981–2010 base period means.
FIGURE T18. Mean (top) and anomalous (bottom) sea surface temperature (SST). Anomalies are departures from the 1981-2010 base period monthly means (Smith and Reynolds 1998, *J. Climate*, 11, 3320-3323).
FIGURE T19. Mean (top) and anomalous (bottom) sea level pressure (SLP) (CDAS/Reanalysis). In top panel, 1000 hPa has been subtracted from contour labels, contour interval is 2 hPa, and values below 1000 hPa are indicated by dashed contours. In bottom panel, anomaly contour interval is 1 hPa and negative anomalies are indicated by dashed contours. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T20. Mean (top) and anomalous (bottom) 850-hPa vector wind (CDAS/Reanalysis) for JAN 2011. Contour interval for isotachs is 4 ms⁻¹ (top) and 2 ms⁻¹ (bottom). Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T21. Mean (top) and anomalous (bottom) 200-hPa vector wind (CDAS/Reanalysis) for JAN 2011. Contour interval for isotachs is 15 ms$^{-1}$ (top) and 5 ms$^{-1}$ (bottom). Anomalies are departures from 1981-2010 base period monthly means.
FIGURE T22. Mean (top) and anomalous (bottom) 200-hPa streamfunction (CDAS/Reanalysis). Contour interval is 20×10^6 m2s$^{-1}$ (top) and 5×10^6 m2s$^{-1}$ (bottom). Negative (positive) values are indicated by dashed (solid) lines. The non-divergent component of the flow is directed along the contours with speed proportional to the gradient. Thus, high (low) stream function corresponds to high (low) geopotential height in the Northern Hemisphere and to low (high) geopotential height in the Southern Hemisphere. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T23. Mean (top) and anomalous (bottom) 200-hPa divergence (CDAS/Reanalysis). Divergence and anomalous divergence are shaded blue. Convergence and anomalous convergence are shaded orange. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T24. Mean (top) and anomalous (bottom) 200-hPa velocity potential (10^6 m^2 s^-1) and divergent wind (CDAS/Reanalysis). Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T25. Mean (top) and anomalous (bottom) outgoing longwave radiation for JAN 2011 (NOAA 18 AVHRR IR window channel measurements by NESDIS/ORA). OLR contour interval is 20 Wm⁻² with values greater than 280 Wm⁻² indicated by dashed contours. Anomaly contour interval is 15 Wm⁻² with positive values indicated by dashed contours and light shading. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T26. Estimated total (top) and anomalous (bottom) rainfall (mm) based on the Special Sensor Microwave/Imager (SSM/I) precipitation index (Ferraro 1997, *J. Geophys. Res.*, 102, 16715-16735). Anomalies are computed from the SSM/I 1987-2010 base period monthly means. Anomalies have been smoothed for display purposes.
FIGURE T27. Mean (top) and anomalous (bottom) cloud liquid water (g m$^{-2}$) based on the Special Sensor Microwave/Imager (SSM/I) (Weng et al 1997: *J. Climate*, 10, 1086-1098). Anomalies are calculated from the 1987-2010 base period means.
FIGURE T28. Mean (top) and anomalous (bottom) vertically integrated water vapor or precipitable water (kg m$^{-2}$) based on the Special Sensor Microwave/Imager (SSM/I) (Ferraro et al., 1996: Bull. Amer. Meteor. Soc., 77, 891-905). Anomalies are calculated from the 1987-2010 base period means.
FIGURE T29. Pressure-longitude section (100E-80W) of the mean (top) and anomalous (bottom) divergence (contour interval is 1×10^{-6} s$^{-1}$) and divergent circulation averaged between 5N-5S. The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010 base period monthly means.
January 2011
Divergence and West–East Divergent Circulation

Mean

Anomaly

FIGURE T30. Pressure-longitude section (80W-100E) of the mean (top) and anomalous (bottom) divergence (contour interval is $1 \times 10^{-6} \text{s}^{-1}$) and divergent circulation averaged between 5N-5S. The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T31. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s\(^{-1}\)) and divergent circulation averaged over the west Pacific sector (120E-170E). The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE T32. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s$^{-1}$) and divergent circulation averaged over the central Pacific sector (130W-180W). The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the 1981-2010 base period monthly means.
During January 2011, 461 satellite-tracked surface drifting buoys, 66% with subsurface drogues attached for measuring mixed layer currents, were reporting from the tropical Pacific. As seen since September 2010, the westward SEC was stronger than normal, although the anomalies were not as dramatic as in the previous month. Westward anomalies of $O(10 \text{ cm/s})$ were present in a broad latitude range from 5-25S. Cold SST anomalies of $-0.5 \text{ to } -1.5\text{C}$ were measured by most drifters east of the dateline from 25S to 10N, with very cold anomalies of $-1.5 \text{ to } -3.0\text{C}$ common in the region 90-125W, 12-24S. In contrast, warm anomalies of $+0.5 \text{ to } +1.5\text{C}$ were measured by many drifters in the Kuroshio system.

Figure A1.1 Top: Movements of drifting buoys in the tropical Pacific Ocean during Jan 2011. The linear segments of each trajectory represent a one week displacement. Trajectories of buoys which have lost their subsurface drogues are gray; those with drogues are black.

Middle: Monthly mean currents calculated from all buoys 1993-2002 (gray), and currents measured by the drogued buoys this month (black) smoothed by an optimal filter.

Bottom: Anomalies from the climatological monthly mean currents for this month.
FIGURE A1.2. Wind Vectors and sea surface temperature (SSTs) from the TAO/TRITON mooring array. Top panel shows monthly means; bottom panel shows monthly anomalies from the COADS wind climatology and Reynolds SST climatology (1971-2000). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/NDBC).
FIGURE A1.3. Time-longitude sections of surface zonal winds (m s⁻¹), sea surface temperature (C) and 20C isotherm depth (m) for the past 24 months. Analysis is based on 5-day averages of moored time series data from the TAO/TRITON array. Positive winds are westerly. Squares on the abscissas indicate longitude where data were available at the start of the time series (top) and end of the time series (bottom). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/NDBC).
FIGURE A1.4. Time-longitude sections of surface zonal winds (m s⁻¹), sea surface temperature (°C) and 20°C isotherm depth (m) for the past 24 months. Analysis is based on 5-day averages of moored time series data from the TAO/TRITON array. Anomalies are relative to monthly climatological cubic spline fitted to 5-day intervals (COADS winds, Reynolds SST, CTD/XBT 20°C depth). Positive winds are westerly. Squares on the abscissas indicate longitude where data were available at the start of the time series (top) and end of the time series (bottom). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/
FIGURE A1.6.
FSU SURFACE PSEUDO-STRESS VECTORS AND ANOMALIES: January 2011. Pseudo-stress vectors (top) are objectively analyzed from ship and buoy winds on a 2° grid. Ship and buoy data are independently weighted and the background field is created from the data. Contour interval of the vector magnitudes is 20 M s⁻². Anomalies (bottom) are departures from 1981–2010 mean. The contour interval is 10 M s⁻². For more information, please visit our web site at http://www.coaps.fsu.edu/RVSMDT/html/winds.shtml. Produced by Jeremy Rolph, Mark A. Bourassa, and Shawn R. Smith, Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306-3040, USA.
Forecast Forum

The canonical correlation analysis (CCA) forecast of SST in the central Pacific (Barnett et al. 1988, Science, 241, 192196; Barnston and Ropelewski 1992, J. Climate, 5, 13161345), is shown in Figs. F1 and F2. This forecast is produced routinely by the Prediction Branch of the Climate Prediction Center. The predictions from the National Centers for Environmental Prediction (NCEP) Coupled Forecast System Model (CFS03) are presented in Figs. F3 and F4a, F4b. Predictions from the Markov model (Xue, et al. 2000: J. Climate, 13, 849871) are shown in Figs. F5 and F6. Predictions from the latest version of the LDEO model (Chen et al. 2000: Geophys. Res. Let., 27, 25852587) are shown in Figs. F7 and F8. Predictions using linear inverse modeling (Penland and Magorian 1993: J. Climate, 6, 10671076) are shown in Figs. F9 and F10. Predictions from the Scripps / Max Planck Institute (MPI) hybrid coupled model (Barnett et al. 1993: J. Climate, 6, 15451566) are shown in Fig. F11. Predictions from the ENSOCLIPER statistical model (Knaff and Landsea 1997, Wea. Forecasting, 12, 633652) are shown in Fig. F12. Niño 3.4 predictions are summarized in Fig. F13, provided by the Forecasting and Prediction Research Group of the IRI.

The CPC and the contributors to the Forecast Forum caution potential users of this predictive information that they can expect only modest skill.

ENSO Alert System Status

La Niña Advisory

Outlook

ENSO-Neutral or La Niña conditions are equally likely during May-June 2011.
Discussion

La Niña persisted during January 2011 as reflected by well below-average sea surface temperatures (SSTs) across much of the equatorial Pacific Ocean (Fig. T18). However, some weakening was evident in certain atmospheric and oceanic anomalies, in part due to Madden-Julian Oscillation activity. Most Niño indices were between -1.4°C and -1.7°C for the month, with the easternmost Niño-1+2 region warming to -0.7°C (Table T2). A lessening of the negative subsurface oceanic heat content anomalies (average temperatures in the upper 300m of the ocean) was observed mostly in association with an eastward shift in the above-average temperatures at depth in the central equatorial Pacific (Fig. T17). Convection remained enhanced over Indonesia and suppressed over the western and central equatorial Pacific (Fig. T25). Also over the western and central equatorial Pacific, the anomalous low-level easterly and upper-level westerly winds decreased in magnitude (Figs. T20, T21). Collectively, these oceanic and atmospheric anomalies reflect an ongoing, mature La Niña that has begun to weaken.

Nearly all of the ENSO model forecasts weaken La Niña in the coming months (Figs. F1-F13). A majority of the models predict a return to ENSO-neutral conditions by May-June-July 2011, although some models persist a weaker La Niña into the Northern Hemisphere summer 2011. Recent trends in the observations and models do not offer many hints on which outcome is more likely. Also, model skill is historically at a minimum during the Northern Hemisphere spring (the “spring barrier”). Therefore La Niña is expected to weaken during the next several months, with ENSO-neutral or La Niña conditions equally likely during May-June 2011.

Weekly updates of oceanic and atmospheric conditions are available on the Climate Prediction Center homepage (El Niño/La Niña Current Conditions and Expert Discussions).
FIGURE F1. Canonical correlation analysis (CCA) sea surface temperature (SST) anomaly prediction for the central Pacific (5°N to 5°S, 120°W to 170°W (Barnston and Ropelewski, 1992, J. Climate, 5, 1316-1345). The three plots on the left hand side are, from top to bottom, the 1-season, 2-season, and 3-season lead forecasts. The solid line in each forecast represents the observed SST standardized anomaly through the latest month. The small squares at the mid-points of the forecast bars represent the real-time CCA predictions based on the anomalies of quasi-global sea level pressure and on the anomalies of tropical Pacific SST, depth of the 20°C isotherm and sea level height over the prior four seasons. The vertical lines represent the one standard deviation error bars for the predictions based on past performance. The three plots on the right side are skills, corresponding to the predicted and observed SST. The skills are derived from cross-correlation tests from 1956 to present. These skills show a clear annual cycle and are inversely proportional to the length of the error bars depicted in the forecast time series.
FIGURE F2. Canonical Correlation Analysis (CCA) forecasts of sea-surface temperature anomalies for the Nino 3.4 region (5N-5S, 120W-170W) for the upcoming five consecutive 3-month periods. Forecasts are expressed as standardized SST anomalies. The CCA predictions are based on anomaly patterns of SST, depth of the 20C isotherm, sea level height, and sea level pressure. Small squares at the midpoints of the vertical forecast bars represent the CCA predictions, and the bars show the one (thick) and two (thin) standard deviation errors. The solid continuous line represents the observed standardized three-month mean SST anomaly in the Nino 3.4 region up to the most recently available data.
FIGURE F3. Predicted 3-month average sea surface temperature (left) and anomalies (right) from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast members. Contour interval is 1°C, with additional contours for 0.5°C and -0.5°C. Negative anomalies are indicated by dashed contours.
FIGURE F4. Predicted and observed sea surface temperature (SST) anomalies for the Nino 3 (top) and Nino 3.4 (bottom) regions from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast members. The ensemble mean of all 40 forecast members is shown by the blue line, individual members are shown by thin lines, and the observation is indicated by the black line. The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W.
FIGURE F5. Predicted 3-month average sea surface temperature anomalies from the NCEP/CPC Markov model (Xue et al. 2000, *J. Climate*, 13, 849-871). The forecast is initiated in JAN 2011. Contour interval is 0.3°C and negative anomalies are indicated by dashed contours. Anomalies are calculated relative to the 1971-2000 climatology.
FIGURE F6. Time evolution of observed and predicted SST anomalies in the Nino 3.4 region (up to 12 lead months) by the NCEP/CPC Markov model (Xue et al. 2000, *J. Climate*, 13, 849-871). Anomalies are calculated relative to the 1971-2000 climatology. Shown in each panel are the forecasts grouped by three consecutive starting months: (a) is for December, January, and February, (b) is for March, April, and May, (c) is for June, July, and August, and (d) is for September, October, and November. The observed Nino 3.4 SST anomalies are indicated by the black dashed lines. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W.
FIGURE F7. Forecasts of the tropical Pacific Predicted SST (shading) and vector wind anomalies for the next 3 seasons based on the LDEO model. Each forecast represents an ensemble average of 3 sets of predictions initialized during the last three consecutive months (see Figure F8).
FIGURE F8. LDEO forecasts of SST anomalies for the Nino 3 region using wind stresses obtained from (top) QuikSCAT, (middle) NCEP, and (bottom) Florida State Univ. (FSU), along with SSTs (obtained from NCEP), and sea surface height data (obtained from TOPEX/POSEIDON) data. Each thin blue line represents a 12-month forecast, initialized one month apart for the past 24 months. Observed SST anomalies are indicated by the thick red line. The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W.
FIGURE F9. Forecast of tropical SST anomalies from the Linear Inverse Modeling technique of Penland and Magorian (1993: *J. Climate*, 6, 1067-1076). The contour interval is 0.3°C. Anomalies are calculated relative to the 1981-2010 climatology and are projected onto 20 leading EOFs.
The Niño 3.4 Index was calculated in the area 6N-6S, 170W-120W. The 1980-2010 climatology was subtracted from ERSST data between 1950 and 2010, after which they were projected onto 20 EOFs containing 90% of the variance. Significant 1950-2010 trends were subtracted from the corresponding PCs, the forecast was made on the detrended anomalies, after which the trend was added to the forecast. Cross-validated forecasts for 2001-2010 are not shown because that decade was necessary to get a good estimate of the trend, thus precluding legitimate cross-validation. Cross-validated forecasts shown before 2001 use trends estimated using data outside the verification period.

FIGURE F10. Predictions of Niño 3.4 SSTA (blue solid line) and verification (solid red line).
FIGURE F11. SST anomaly forecast for the equatorial Pacific from the Hybrid Coupled Model (HCM) developed by the Scripps Institution of Oceanography and the Max-Plank Institut fuer Meteorologie.
FIGURE F12. ENSO-CLIPER statistical model forecasts of three-month average sea surface temperature anomalies (green lines, deg. C) in (top panel) the Nino 4 region (5N-5S, 160E-150W), (second panel) the Nino 3.4 region (5N-5S, 170W-120W), (third panel) the Nino 3 region (5N-5S, 150W-90W), and (fourth panel) the Nino 1+2 region (0-10S, 90W-80W) (Knaff and Landsea 1997, Wea. Forecasting, 12, 633-652). Bottom panel shows predictions of the three-month standardized Southern Oscillation Index (SOI, green line). Horizontal bars on green line indicate the adjusted root mean square error (RMSE). The Observed three-month average values are indicated by the thick blue line. SST anomalies are departures from the 1981-2010 base period means, and the SOI is calculated from the 1951-1980 base period means.
FIGURE F13. Time series of predicted sea surface temperature anomalies for the Nino 3.4 region (deg. C) from various dynamical and statistical models for nine overlapping 3-month periods. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W. Figure provided by the International Research Institute (IRI).
Extratropical Highlights – January 2011

Beginning with this month, all anomalies reflect departures from the 1981-2010 base period.

1. Northern Hemisphere

The 500-hPa circulation during January featured a hemispheric-scale pattern of anomalies characterized by above average heights in the polar region and generally below average heights in the middle latitudes (Fig. E9). This pattern reflects a negative phase of the Arctic Oscillation (AO, Fig. S2), and also projects strongly (-1.5) onto the negative phase of the North Atlantic Oscillation (NAO) (Table E1, Fig. E7). A negative NAO index has prevailed for the last 19 months (since June 2009).

Also evident during January was a continuation of enhanced mid-Pacific troughs in both hemispheres over the tropical and subtropical central/eastern Pacific (Fig. T22). In the NH, these conditions contributed to an enhanced East Asian jet exit region, and to above average 500-hPa heights across Alaska and the Gulf of Alaska. These features are consistent with the ongoing mature phase of La Niña.

The main surface temperature signals during January included warmer than average conditions across eastern Canada, the southwestern U.S., and south-central Russia, and cooler-than-average conditions in the eastern U.S., Alaska, most of Europe, and large parts of northern Asia (Fig. E1). Monthly precipitation was below average in the western and eastern U.S. and Canada, western Canada, portions of central Europe, and central Russia (Fig. E3). No significant regions of above average precipitation were observed this month.

a. North Pacific and North America

The mean 500-hPa circulation during January featured a strong ridge over the Gulf of Alaska and Alaska, and a deep trough over the eastern U.S. (Fig. E9). This pattern showed links to the mature La Niña conditions and to the ongoing strong negative phase of the AO/NAO.

La Niña is associated with deep tropical convection focused over Indonesia and the eastern Indian Ocean, along with a disappearance of tropical convection from the western and central equatorial Pacific (Fig. T25). This westward retraction in the area of deep convection acts to amplify the mean mid-Pacific troughs at 200-hPa in both hemispheres (Fig. T22), which in the NH acts to amplify and retract westward the exit region of the east Asian jet stream (Fig. T21). This jet structure normally favors corresponding westward shifts in the downstream ridge and trough axes normally located over western and eastern North America, respectively. This latter feature was not present during January.

The 500-hPa circulation over eastern North America continued to reflect a strong negative phase of the AO/NAO. Specifically, the pattern of positive height anomalies over eastern Canada extended well eastward to Greenland and the high latitudes of the central North Atlantic, while the negative anomalies extended from the eastern U.S. to southern Europe. This north–south dipole pattern, along with its associated southward shift of the mean North Atlantic jet stream, reflects the negative phase of the NAO (Fig. T21).
Consistent with this pattern, monthly surface temperatures in northeastern Canada exceeded the 90th percentile of occurrences (Fig. E1), while temperatures in the southeastern U.S. were in the lowest 10th percentile of occurrences. The largest precipitation anomalies during January included below average totals in the western and eastern U.S., with many areas recording totals in the lowest 10th percentile of occurrences (Fig. E5). In the U.S., many areas recorded a multi-month continuation of below average precipitation. These areas included the Southwest, the Southeast, the Gulf Coast, the Great Plains, and the Great Lakes region.

b. North Atlantic

Across the extratropical North Atlantic, the 500-hPa circulation during January featured an ongoing negative phase of the North Atlantic Oscillation (NAO) (Fig. E7, Table E1). This phase is characterized by above average heights over Greenland, and below average heights extending from eastern North America to southern Europe. The negative NAO has prevailed in every month since June 2009, with the exception of September 2009.

A characteristic cool-season feature of the negative NAO is southward shift of the mean North Atlantic jet stream (Fig. T21). During January, the mean Atlantic jet stream entered the continent in northern Africa, which is well south of its normal position near Great Britain (Fig. E10). As a result, the normal northward heat transport associated with this jet stream was greatly diminished, and was replaced by an extensive northwesterly flow of much colder air across Europe and western Russia. These conditions contributed to well below average temperatures across northern Europe, Scandinavia, and western Russia, with many locations recording totals in the lowest 10th percentile of occurrences (Fig. E1). The subsequent eastward transport of this colder air, combined with a strong high pressure system and likely enhanced radiative cooling, also contributed to significantly below average temperatures across central Russia.

2. Southern Hemisphere

Over the South Pacific Ocean, the 500-hPa circulation during January reflected above average heights in the middle latitudes and below average heights at high latitudes (Fig. E15). In the subtropics, the upper-level (200-hPa) streamfunction pattern reflected an enhanced ridge across Australia and the western South Pacific, and an amplified trough across central South Pacific. This overall anomaly pattern is consistent with La Niña (Fig. T22).

The main temperature anomalies during January included a continuation of well below average temperatures in eastern Australia, where departures were again in the lowest 10th percentile of occurrences. The main precipitation signals reflected above average totals in northwestern Australia, and across the entire South African monsoon region (Fig. E3).

The South African rainy season lasts from October to April. During January, rainfall for the region as a whole was the highest for any January dating back to at least 1979 (Fig. E4). For the 2010-11 rainy season, precipitation was slightly below average in October, near average in November, and above average in both December and January. Seasonal rainfall is typically above average in this region during La Niña.
<table>
<thead>
<tr>
<th>MONTH</th>
<th>NAO</th>
<th>EA</th>
<th>WP</th>
<th>EP-NP</th>
<th>PNA</th>
<th>TNH</th>
<th>EATL/WRUS</th>
<th>SCAND</th>
<th>POLEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 11</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-1.4</td>
<td>-0.4</td>
<td>1.0</td>
<td>1.1</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>DEC 10</td>
<td>-1.8</td>
<td>-0.5</td>
<td>-1.3</td>
<td>---</td>
<td>-2.1</td>
<td>-2.9</td>
<td>-2.0</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>NOV 10</td>
<td>-1.8</td>
<td>0.2</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.8</td>
<td>---</td>
<td>-1.0</td>
<td>-0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>OCT 10</td>
<td>-0.5</td>
<td>-0.8</td>
<td>0.7</td>
<td>-0.6</td>
<td>2.2</td>
<td>---</td>
<td>0.0</td>
<td>0.3</td>
<td>-1.1</td>
</tr>
<tr>
<td>SEP 10</td>
<td>-0.6</td>
<td>0.6</td>
<td>0.1</td>
<td>-0.3</td>
<td>1.1</td>
<td>---</td>
<td>-1.1</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>AUG 10</td>
<td>-1.7</td>
<td>1.2</td>
<td>0.4</td>
<td>-1.5</td>
<td>1.1</td>
<td>---</td>
<td>-0.8</td>
<td>-0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>JUL 10</td>
<td>-0.4</td>
<td>1.8</td>
<td>-2.4</td>
<td>-0.2</td>
<td>0.9</td>
<td>---</td>
<td>-1.4</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>JUN 10</td>
<td>-0.5</td>
<td>0.3</td>
<td>-0.1</td>
<td>1.5</td>
<td>-0.1</td>
<td>---</td>
<td>-1.9</td>
<td>-0.6</td>
<td>2.1</td>
</tr>
<tr>
<td>MAY 10</td>
<td>-1.3</td>
<td>-1.4</td>
<td>-2.5</td>
<td>-0.2</td>
<td>-0.7</td>
<td>---</td>
<td>-2.1</td>
<td>0.5</td>
<td>-1.8</td>
</tr>
<tr>
<td>APR 10</td>
<td>-0.9</td>
<td>0.1</td>
<td>0.9</td>
<td>-1.2</td>
<td>1.3</td>
<td>---</td>
<td>-0.7</td>
<td>-0.3</td>
<td>-0.4</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-1.3</td>
<td>1.2</td>
<td>1.8</td>
<td>-1.6</td>
<td>1.7</td>
<td>---</td>
<td>1.1</td>
<td>-0.4</td>
<td>-1.2</td>
</tr>
<tr>
<td>FEB 10</td>
<td>-2.7</td>
<td>1.3</td>
<td>0.2</td>
<td>-0.5</td>
<td>0.5</td>
<td>-1.3</td>
<td>-1.0</td>
<td>1.0</td>
<td>-1.9</td>
</tr>
<tr>
<td>JAN 10</td>
<td>-1.8</td>
<td>0.4</td>
<td>0.5</td>
<td>-0.6</td>
<td>1.0</td>
<td>-1.3</td>
<td>-0.6</td>
<td>1.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

TABLE E1—Standardized amplitudes of selected Northern Hemisphere teleconnection patterns for the most recent thirteen months (computational procedures are described in Fig. E7). Pattern names and abbreviations are: North Atlantic Oscillation (NAO); East Atlantic pattern (EA); West Pacific pattern (WP); East Pacific - North Pacific pattern (EP-NP); Pacific/North American pattern (PNA); Tropical/Northern Hemisphere pattern (TNH); East Atlantic/Western Russia pattern (EATL/WRUS-called Eurasia-2 pattern by Barnston and Livezey, 1987, Mon. Wea. Rev., 115, 1083-1126); Scandinavia pattern (SCAND-called Eurasia-1 pattern by Barnston and Livezey 1987); and Polar Eurasia pattern (POLEUR). No value is plotted for calendar months in which the pattern does not appear as a leading mode.
FIGURE E1. Surface temperature anomalies (°C, top) and surface temperature expressed as percentiles of the normal (Gaussian) distribution fit to the 1981–2010 base period data (bottom) for JAN 2011. Analysis is based on station data over land and on SST data over the oceans (top). Anomalies for station data are departures from the 1981–2010 base period means, while SST anomalies are departures from the 1981–2010 adjusted OI climatology. (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Regions with insufficient data for analysis in both figures are indicated by shading in the top figure only.
FIGURE E2. Monthly global (top), Northern Hemisphere (middle), and Southern Hemisphere (bottom) surface temperature anomalies (land only, °C) from January 1990 - present, computed as departures from the 1981–2010 base period means.
FIGURE E3. Anomalous precipitation (mm, top) and precipitation percentiles based on a Gamma distribution fit to the 1981–2010 base period data (bottom) for JAN 2011. Data are obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, *J. Climate*, 12, 3335–3342). Contours are drawn at 200, 100, 50, 25, -25, -50, -100, and -200 mm in top panel. Percentiles are not plotted in regions where mean monthly precipitation is <5mm/month.
FIGURE E4. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles (% bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335–3342). The monthly precipitation climatology (mm, dashed lines) is from the 1981–2010 base period monthly means. Monthly percentiles are not shown if the monthly mean is less than 5 mm.
FIGURE E5. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles (%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, *J. Climate*, 12, 3335–3342). The monthly precipitation climatology (mm, dashed lines) is from the 1981–2010 base period monthly means. Monthly percentiles are not shown if the monthly mean is less than 5 mm.
FIGURE E6. Observed precipitation (upper left), departure from average (upper right), percent of average (lower left), and average precipitation (lower right) for JAN 2011. The units are given on each panel. Base period for averages is 1981–2010. Results are based on CPC’s U. S. daily precipitation analysis, which is available at http://www.cpc.ncep.noaa.gov/products/precip/realtime.
FIGURE E7. Standardized monthly Northern Hemisphere teleconnection indices. The teleconnection patterns are calculated from a Rotated Principal Component Analysis (RPCA) applied to monthly standardized 500-hPa height anomalies during the 1981-2010 base period. To obtain these patterns, ten leading unrotated modes are first calculated for each calendar month by using the monthly height anomaly fields for the three-month period centered on that month: [i.e., The July modes are calculated from the June, July, and August standardized monthly anomalies]. A Varimax spatial rotation of the ten leading unrotated modes for each calendar month results in 120 rotated modes (12 months x 10 modes per month) that yield ten primary teleconnection patterns. The teleconnection indices are calculated by first projecting the standardized monthly anomalies onto the teleconnection patterns corresponding to that month (eight or nine teleconnection patterns are seen in each calendar month). The indices are then solved for simultaneously using a Least-Squares approach. In this approach, the indices are the solution to the Least-Squares system of equations which explains the maximum spatial structure of the observed height anomaly field during the month. The indices are then standardized for each pattern and calendar month independently. No index value exists when the teleconnection pattern does not appear as one of the ten leading rotated EOF’s valid for that month.
FIGURE E8. Northern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for JAN 2011. Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
FIGURE E9. Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for JAN 2011. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3 dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
FIGURE E10. Northern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for JAN 2011. Mean (anomaly) isotach contour interval is 10 (5) ms⁻¹. Values greater than 30 ms⁻¹ (left) and 10 ms⁻¹ (right) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE E11. Northern Hemisphere percentage of days during JAN 2011 in which 500-hPa height anomalies greater than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour interval is 20%.
FIGURE E12. Northern Hemisphere: Daily 500-hPa height anomalies for JAN 2011 averaged over the 5° latitude band centered on 40°N. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are departures from the 1981-2010 base period daily means.
FIGURE E13. Northern Hemisphere 500-hPa heights (thick contours, interval is 6 dam) overlaid with (Top) Standard deviation of 10-day high-pass (HP) filtered height anomalies and (Bottom) Normalized anomalous variance of 10-day HP filtered height anomalies. A Lanczos filter is used to calculate the HP filtered anomalies. Anomalies are departures from the 1981-2010 daily means.
FIGURE E14. Southern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for JAN 2011. Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
FIGURE E15. Southern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for JAN 2011. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3 dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
FIGURE E16. Southern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for JAN 2011. Mean (anomaly) isotach contour interval is 10 (5) ms$^{-1}$. Values greater than 30 ms$^{-1}$ (left) and 10 ms$^{-1}$ (right) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.
FIGURE E17. Southern Hemisphere percentage of days during JAN 2011 in which 500-hPa height anomalies greater than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour interval is 20%.
FIGURE E18. Southern Hemisphere: Daily 500-hPa height anomalies for JAN 2011 averaged over the 5° latitude band centered on 40°S. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are departures from the 1981-2010 base period daily means.
FIGURE S1. Stratospheric height anomalies (m) at selected levels for JAN 2011. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are calculated from the 1981-2010 base period means. Winter Hemisphere is shown.
FIGURE S2. Height-longitude sections during JAN 2011 for height anomalies (contour) and temperature anomalies (shaded). In both panels, positive values are indicated by solid contours and dark shading, while negative anomalies are indicated by dashed contours and light shading. Contour interval for height anomalies is 60 m and for temperature anomalies is 2°C. Anomalies are calculated from the 1981-2010 base period monthly means. Winter Hemisphere is shown.
FIGURE S4. Daily mean temperatures at 10-hPa and 2-hPa (thick line) in the region 65°–90°N and 65°–90°S for the past two years. Dashed line depicts the 1981–2010 base period daily mean. Thin solid lines depict the daily extreme maximum and minimum temperatures.
FIGURE S5. Monthly ozone anomalies (percent) from the long term monthly means for five zones: 50N-30N (NH mid-latitudes), 25N-10N (NH tropical surf zone), 10N-10S (Equatorial-QBO zone), 10S-25S (SH tropical surf zone), and 30S-50S (SH mid-latitudes). The long term monthly means are determined from the entire data set beginning in 1979.
FIGURE S6. Northern (top) and Southern (bottom) Hemisphere total ozone anomaly (percent difference from monthly mean for the period 1981-2010). The region near the winter pole has no SBUV/2 data.
FIGURE S7. Daily vertical component of EP flux (which is proportional to the poleward transport of heat or upward transport of potential energy by planetary wave) at 100 hPa averaged over (top) 30°N–90°N and (bottom) 30°S–90°S for JAN 2011. The EP flux unit (kg m^{-1} s^{-2}) has been scaled by multiplying a factor of the Brunt Vaisala frequency divided by the Coriolis parameter and the radius of the earth. The letter 'M' indicates the current monthly mean value and the letter 'C' indicates the climatological mean value. Additionally, the normalized departures from the monthly climatological EP flux values are shown.
FIGURE S8. Daily time series showing the size of the SH polar vortex (representing the area enclosed by the 32 PVU contour on the 450K isentropic surface), and the areal coverage of temperatures < -78°C on the 450K isentropic surface.
FIGURE A2.1. (a) Daily amplitudes of the Arctic Oscillation (AO) the North Atlantic Oscillation (NAO), and the Pacific-North American (PNA) pattern. The pattern amplitudes for the AO, (NAO, PNA) are calculated by projecting the daily 1000-hPa (500-hPa) height anomaly field onto the leading EOF obtained from standardized time-series of daily 1000-hPa (500-hPa) height for all months of the year. The base period is 1981–2010.

(b-d) Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for selected periods during JAN 2011 are shown in the remaining 3 panels. Mean heights are denoted by solid contours drawn at an interval of 8 dam. Dark (light) shading corresponds to anomalies greater than 50 m (less than -50 m). Anomalies are calculated as departures from the 1981-2010 base period daily means.
FIGURE A2.2. SSM/I derived snow cover frequency (%) (left) and snow cover anomaly (%) (right) for the month of JAN 2011 based on 1987 - 2010 base period for the Northern Hemisphere (top) and Southern Hemisphere (bottom). It is generated using the algorithm described by Ferraro et. al, 1996, Bull. Amer. Meteor. Soc., vol 77, 891-905.