CLIMATE DIAGNOSTICS BULLETIN

APRIL 2010

NEAR REAL-TIME OCEAN / ATMOSPHERE Monitoring, Assessments, and Prediction

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service National Centers for Environmental Prediction
Chief Editor: Gerald D. Bell
Editors: Wei Shi, Michelle L’Heureux, and Michael Halpert
Bulletin Production: Wei Shi

External Collaborators:
- Center for Ocean-Atmospheric Prediction Studies (COAPS)
- Cooperative Institute for Research in the Atmosphere (CIRA)
- Earth & Space Research
- International Research Institute for Climate and Society (IRI)
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO)
- Lamont-Doherty Earth Observatory (LDEO)
- NOAA-CIRES, Climate Diagnostics Center
- NOAA-AOML, Atlantic Oceanographic and Meteorological Laboratory
- NOAA-NESDIS-STAR, Center for Satellite Applications and Research
- NOAA-NDBC, National Data Buoy Center
- Scripps Institution of Oceanography

Software: Most of the bulletin figures generated at CPC are created using the Grid Analysis and Display System (GrADS).
- Climate Diagnostics Bulletin available on the World Wide Web

The CDB is available on the World Wide Web. The address of the online version of the CDB is:

http://www.cpc.ncep.noaa.gov/products/CDB

If you have any problems accessing the bulletin, contact Dr. Wei Shi by E-mail:

Wei.Shi@noaa.gov
Table of Contents

TROPICS

- Highlights page 6
- Table of Atmospheric Indices page 7
- Table of Oceanic Indices page 8

Time Series

- Southern Oscillation Index (SOI) T1
- Tahiti and Darwin SLP Anomalies T1
- OLR Anomalies T1
- CDAS/Reanalysis SOI & Equatorial SOI T2
- 200-hPa Zonal Wind Anomalies T3
- 500-hPa Temperature Anomalies T3
- 30-hPa and 50-hPa Zonal Wind Anomalies T3
- 850-hPa Zonal Wind Anomalies T4
- Equatorial Pacific SST Anomalies T5

Time-Longitude Sections

- Mean and Anomalous Sea Level Pressure T6
- Mean and Anomalous 850-hPa Zonal Wind T7
- Mean and Anomalous OLR T8
- Mean and Anomalous SST T9
- Pentad SLP Anomalies T10
- Pentad OLR Anomalies T11
- Pentad 200-hPa Velocity Potential Anomalies T12
- Pentad 850-hPa Zonal Wind Anomalies T13
- Anomalous Equatorial Zonal Wind T14
- Mean and Anomalous Depth of the 20°C Isotherm T15

Mean & Anomaly Fields

- Depth of the 20°C Isotherm T16
- Subsurface Equatorial Pacific Temperatures T17
- SST T18
- SLP T19
- 850-hPa Vector Wind T20
- 200-hPa Vector Wind T21
- 200-hPa Streamfunction T22
- 200-hPa Divergence T23
- 200-hPa Velocity Potential and Divergent Wind T24
- OLR T25
- SSM/I Tropical Precipitation Estimates T26
- Cloud Liquid Water T27
- Precipitable Water T28
- Divergence & E-W Divergent Circulation T29 - T30
- Pacific Zonal Wind & N-S Divergent Circulation T31 - T32

Appendix 1: Outside Contributions

- Tropical Drifting Buoys A1.1
- Thermistor Chain Data A1.2
- TAO/TRITON Array Time-Longitude Sections A1.3 - A1.4

4
FORECAST FORUM
Discussion page 49
Canonical Correlation Analysis Forecasts F1 - F2
NCEP Coupled Model Forecasts F3 - F4
NCEP Markov Model Forecasts F5 - F6
LDEO Model Forecasts F7 - F8
Linear Inverse Modeling Forecasts F9 - F10
Scripps/MPI Hybrid Coupled Model Forecast F11
ENSO-CLIPER Model Forecast F12
Model Forecasts of Niño 3.4 F13

EXTRATROPICS
Highlights page 64
Table of Teleconnection Indices page 66
Global Surface Temperature E1
Temperature Anomalies (Land Only) E2
Global Precipitation E3
Regional Precipitation Estimates E4 - E5
U. S. Precipitation E6

Northern Hemisphere
Teleconnection Indices E7
Mean and Anomalous SLP E8
Mean and Anomalous 500-hPa heights E9
Mean and Anomalous 300-hPa Wind Vectors E10
500-hPa Persistence E11
Time-Longitude Sections of 500-hPa Height Anomalies E12
700-hPa Storm Track E13

Southern Hemisphere
Mean and Anomalous SLP E14
Mean and Anomalous 500-hPa heights E15
Mean and Anomalous 300-hPa Wind Vectors E16
500-hPa Persistence E17
Time-Longitude Sections of 500-hPa Height Anomalies E18

Stratosphere
Height Anomalies S1 - S2
Temperatures S3 - S4
Ozone S5 - S6
Vertical Component of EP Flux S7
Ozone Hole S8

Appendix 2: Additional Figures
Arctic Oscillation and 500-hPa Anomalies A2.1
Snow Cover A2.2

FIGURE
East Pacific SST and Sea Level A1.5
Pacific Wind Stress and Anomalies A1.6
Satellite-Derived Surface Currents A1.7 - A1.8
Tropical Highlights - April 2010

El Niño weakened during April 2010, as the sea surface temperature (SST) anomalies decreased across most of the equatorial Pacific Ocean (Fig. T18). The latest monthly SST indices were +0.7°C for both the Niño-3.4 and the Niño-3 regions. (Table T2, Fig. T5). Consistent with this evolution, the oceanic thermocline (measured by the depth of the 20°C isotherm) was shallower than average across the central equatorial Pacific (Figs. T15, T16), with sub-surface temperatures remaining below average in that region (Fig. T17).

Also during April, equatorial low-level easterly winds remained stronger than average over the western Pacific, while the upper-level westerly wind anomalies persisted across the central Pacific (Table T1, Figs. T20 and T21). This wind pattern was associated with enhanced convection over Indonesia and suppressed convection across the equatorial Pacific, south of the equator (Figs. T25, T26 and E3). Collectively, these oceanic and atmospheric anomalies reflect a weakening El Niño.

For the latest status of the ENSO cycle see the ENSO Diagnostic Discussion at:
<table>
<thead>
<tr>
<th>MONTH</th>
<th>SLP ANOMALIES</th>
<th>TAHITI minus DARWIN SOI</th>
<th>850-hPa ZONAL WIND INDEX</th>
<th>200-hPa WIND INDEX</th>
<th>OLR Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 10</td>
<td>2.0</td>
<td>0.2</td>
<td>1.2</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-0.7</td>
<td>1.5</td>
<td>-1.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>FEB 10</td>
<td>-1.9</td>
<td>1.4</td>
<td>-2.1</td>
<td>-0.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>JAN 10</td>
<td>-2.6</td>
<td>-0.3</td>
<td>-1.5</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>DEC 09</td>
<td>-1.0</td>
<td>0.6</td>
<td>-1.0</td>
<td>0.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>NOV 09</td>
<td>-1.1</td>
<td>0.2</td>
<td>-0.8</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>OCT 09</td>
<td>-1.8</td>
<td>0.8</td>
<td>-1.7</td>
<td>-0.9</td>
<td>-1.2</td>
</tr>
<tr>
<td>SEP 09</td>
<td>0.0</td>
<td>-0.6</td>
<td>0.3</td>
<td>-0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>AUG 09</td>
<td>-0.7</td>
<td>0.3</td>
<td>-0.7</td>
<td>-0.1</td>
<td>-0.6</td>
</tr>
<tr>
<td>JUL 09</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>JUN 09</td>
<td>-0.1</td>
<td>0.4</td>
<td>-0.3</td>
<td>0.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>MAY 09</td>
<td>-0.9</td>
<td>-0.3</td>
<td>-0.4</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>APR 09</td>
<td>0.9</td>
<td>-0.1</td>
<td>0.7</td>
<td>1.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE T1 - Atmospheric index values for the most recent 12 months. Indices are standardized by the mean annual standard deviation, except for the Tahiti and Darwin SLP anomalies which are in units of hPa. Positive (negative) values of 200-hPa zonal wind index imply westerly (easterly) anomalies. Positive (negative) values of 850-hPa zonal wind indices imply easterly (westerly) anomalies.
<table>
<thead>
<tr>
<th>MONTH</th>
<th>PACIFIC SST</th>
<th>ATLANTIC SST</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIÑO 1+2 0-10°S 90°W-80°W</td>
<td>NIÑO 3 5°N-5°S 150°W-90°W</td>
<td>NIÑO 3.4 5°N-5°S 170°W-120°W</td>
</tr>
<tr>
<td>APR 10</td>
<td>0.6 26.1</td>
<td>0.7 28.7</td>
<td>0.7 28.4</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-0.2 26.2</td>
<td>0.7 27.7</td>
<td>1.1 28.3</td>
</tr>
<tr>
<td>FEB 10</td>
<td>0.0 26.0</td>
<td>0.7 27.1</td>
<td>1.2 27.9</td>
</tr>
<tr>
<td>JAN 10</td>
<td>0.2 24.7</td>
<td>1.0 26.6</td>
<td>1.6 28.1</td>
</tr>
<tr>
<td>DEC 09</td>
<td>0.3 23.1</td>
<td>1.6 26.7</td>
<td>1.8 28.3</td>
</tr>
<tr>
<td>NOV 09</td>
<td>0.5 22.1</td>
<td>1.3 26.2</td>
<td>1.7 28.2</td>
</tr>
<tr>
<td>OCT 09</td>
<td>0.0 20.9</td>
<td>0.8 25.7</td>
<td>1.0 27.6</td>
</tr>
<tr>
<td>SEP 09</td>
<td>0.3 20.8</td>
<td>0.8 25.7</td>
<td>0.8 27.5</td>
</tr>
<tr>
<td>AUG 09</td>
<td>0.8 21.6</td>
<td>1.0 25.9</td>
<td>0.8 27.5</td>
</tr>
<tr>
<td>JUL 09</td>
<td>0.9 22.7</td>
<td>1.0 26.6</td>
<td>0.9 28.0</td>
</tr>
<tr>
<td>JUN 09</td>
<td>0.7 23.7</td>
<td>0.7 27.1</td>
<td>0.6 28.1</td>
</tr>
<tr>
<td>MAY 09</td>
<td>0.6 24.9</td>
<td>0.4 27.4</td>
<td>0.3 28.0</td>
</tr>
<tr>
<td>APR 09</td>
<td>0.5 26.0</td>
<td>0.0 27.4</td>
<td>-0.2 27.5</td>
</tr>
</tbody>
</table>

TABLE T2. Mean and anomalous sea surface temperature (°C) for the most recent 12 months. Anomalies are departures from the 1971–2000 adjusted OI climatology (Smith and Reynolds 1998, *J. Climate*, 11, 3320-3323).
FIGURE T1. Five-month running mean of the Southern Oscillation Index (SOI) (top), sea-level pressure anomaly (hPa) at Darwin and Tahiti (middle), and outgoing longwave radiation anomaly (OLR) averaged over the area 5N-5S, 160E-160W (bottom). Anomalies in the top and middle panels are departures from the 1951-1980 base period means and are normalized by the mean annual standard deviation. Anomalies in the bottom panel are departures from the 1979-1995 base period means. Individual monthly values are indicated by “x”s in the top and bottom panels. The x-axis labels are centered on July.
FIGURE T2. Three-month running mean of a CDAS/Reanalysis-derived (a) Southern Oscillation Index (RSOI), (b) standardized pressure anomalies near Tahiti (solid) and Darwin (dashed), (c) an equatorial SOI ([EPAC] - [INDO]), and (d) standardized equatorial pressure anomalies for (EPAC) (solid) and (INDO) (dashed). Anomalies are departures from the 1979–95 base period means and are normalized by the mean annual standard deviation. The equatorial SOI is calculated as the normalized difference between the standardized anomalies averaged between 5°N–5°S, 80°W–130°W (EPAC) and 5°N–5°S, 90°E–140°E (INDO).
FIGURE T3. Five-month running mean (solid lines) and individual monthly mean (dots) of the 200-hPa zonal wind anomalies averaged over the area 5N-5S, 165W-110W (top), the 500-hPa virtual temperature anomalies averaged over the latitude band 20N-20S (middle), and the equatorial zonally-averaged zonal wind anomalies at 30-hPa (red) and 50-hPa (blue) (bottom). In the top panel, anomalies are normalized by the mean annual standard deviation. Anomalies are departures from the 1979-1995 base period means. The x-axis labels are centered on January.
FIGURE T4. Five-month running mean (solid line) and individual monthly mean (dots) of the standardized 850-hPa zonal wind anomaly index in the latitude belt 5N-5S for 135E-180 (top), 175W-140W (middle) and 135W-120W (bottom). Anomalies are departures from the 1979-1995 base period means and are normalized by the mean annual standard deviation. The x-axis labels are centered on January. Positive (negative) values indicate easterly (westerly) anomalies.
FIGURE T5. Nino region indices, calculated as the area-averaged sea surface temperature anomalies (C) for the specified region. The Nino 1+2 region (top) covers the extreme eastern equatorial Pacific between 0-10S, 90W-80W. The Nino-3 region (2nd from top) spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4 region (3rd from top) spans the east-central equatorial Pacific between 5N-5S, 170W-120W. The Nino 4 region (bottom) spans the date line and covers the area 5N-5S, 160E-150W. Anomalies are departures from the 1971-2000 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Monthly values of each index are also displayed in Table 2.

Table 2
FIGURE T6. Time-longitude section of mean (top) and anomalous (bottom) sea level pressure (SLP) averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 1.0 hPa (top) and 0.5 hPa (bottom). Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1979-1995 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T7. Time-longitude section of mean (top) and anomalous (bottom) 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 2 ms⁻¹. Blue shading and dashed contours indicate easterlies (top) and easterly anomalies (bottom). Anomalies are departures from the 1979-1995 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T8. Time-longitude section of mean (top) and anomalous (bottom) outgoing longwave radiation (OLR) averaged between 5N-5S. Contour interval is 10 Wm$^{-2}$. Dashed contours in bottom panel indicate negative OLR anomalies. Anomalies are departures from the 1979-1995 base period monthly means. The data are smoothed temporally using a 3-month running average.
FIGURE T9. Time-longitude section of monthly mean (top) and anomalous (bottom) sea surface temperature (SST) averaged between 5N-5S. Contour interval is 1C (top) and 0.5C (bottom). Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1971-2000 base period means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323).
FIGURE T10. Time-longitude section of anomalous sea level pressure (hPa) averaged between 5N-5S (CDAS/Reanaysis). Contour interval is 1 hPa. Dashed contours indicate negative anomalies. Anomalies are departures from the 1979-1995 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T11. Time-longitude section of anomalous outgoing longwave radiation averaged between 5N-5S. Contour interval is 15 Wm$^{-2}$. Dashed contours indicate negative anomalies. Anomalies are departures from the 1979-1995 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T12. Time-longitude section of anomalous 200-hPa velocity potential averaged between 5N-5S (CDAS/Re-analysis). Contour interval is $3 \times 10^6 \text{m}^2\text{s}^{-1}$. Dashed contours indicate negative anomalies. Anomalies are departures from the 1979-1995 base period pentad means. The data are smoothed temporally using a 3-point running average.
FIGURE T13. Time-longitude section of anomalous 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis). Contour interval is 2 m/s. Dashed contours indicate negative anomalies. Anomalies are departures from the 1979-1995 base period pentad means. The data are smoothed temporally by using a 3-point running average.
FIGURE T14. Equatorial time-height section of anomalous zonally-averaged zonal wind (m s\(^{-1}\)) (CDAS/Reanalysis). Contour interval is 10 ms\(^{-1}\). Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T15. Mean (top) and anomalous (bottom) depth of the 20C isotherm averaged between 5N-5S in the Pacific Ocean. Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic observations into an oceanic GCM (Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. AMS 84th Annual Meeting, Seattle, Washington, 11-15). The contour interval is 10 m. Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from the 1982-2004 base period means.
FIGURE T16. Mean (top) and anomalous (bottom) depth of the 20°C isotherm for APR 2010. Contour interval is 40 m (top) and 10 m (bottom). Dashed contours in bottom panel indicate negative anomalies. Data are derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be submitted to BAMS). Anomalies are departures from the 1982–2004 base period means.
FIGURE T17. Equatorial depth-longitude section of ocean temperature (top) and ocean temperature anomalies (bottom) for APR 2010. Contour interval is 1°C. Dashed contours in bottom panel indicate negative anomalies. Data are derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be submitted to BAMS). Anomalies are departures from the 1982–2004 base period means.
FIGURE T19. Mean (top) and anomalous (bottom) sea level pressure (SLP) (CDAS/Reanalysis). In top panel, 1000 hPa has been subtracted from contour labels, contour interval is 2 hPa, and values below 1000 hPa are indicated by dashed contours. In bottom panel, anomaly contour interval is 1 hPa and negative anomalies are indicated by dashed contours. Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T20. Mean (top) and anomalous (bottom) 850-hPa vector wind (CDAS/Reanaysis) for APR 2010. Contour interval for isotachs is 4 ms$^{-1}$ (top) and 2 ms$^{-1}$ (bottom). Anomalies are departures from the 1979–95 base period monthly means.
FIGURE T21. Mean (top) and anomalous (bottom) 200-hPa vector wind (CDAS/Reanalysis) for APR 2010. Contour interval for isotachs is 15 ms$^{-1}$ (top) and 5 ms$^{-1}$ (bottom). Anomalies are departures from 1979–95 base period monthly means.
FIGURE T22. Mean (top) and anomalous (bottom) 200-hPa streamfunction (CDAS/Reanalysis). Contour interval is 20 x 10^6 m^2 s^{-1} (top) and 5 x 10^6 m^2 s^{-1} (bottom). Negative (positive) values are indicated by dashed (solid) lines. The non-divergent component of the flow is directed along the contours with speed proportional to the gradient. Thus, high (low) stream function corresponds to high (low) geopotential height in the Northern Hemisphere and to low (high) geopotential height in the Southern Hemisphere. Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T23. Mean (top) and anomalous (bottom) 200-hPa divergence (CDAS/Reanalysis). Divergence and anomalous divergence are shaded blue. Convergence and anomalous convergence are shaded orange. Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T24. Mean (top) and anomalous (bottom) 200-hPa velocity potential \((10^6 \text{m}^2\text{s}^{-1})\) and divergent wind (CDAS/Reanalysis). Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T25. Mean (top) and anomalous (bottom) outgoing longwave radiation for APR 2010 (NOAA 18 AVHRR IR window channel measurements by NESDIS/ORA). OLR contour interval is 20 Wm\(^{-2}\) with values greater than 280 Wm\(^{-2}\) indicated by dashed contours. Anomaly contour interval is 15 Wm\(^{-2}\) with positive values indicated by dashed contours and light shading. Anomalies are departures from the 1979–95 base period monthly means.
FIGURE T26. Estimated total (top) and anomalous (bottom) rainfall (mm) based on the Special Sensor Microwave/Imager (SSM/I) precipitation index (Ferraro 1997, *J. Geophys. Res.*, 102, 16715-16735). Anomalies are computed from the SSM/I 1987-2006 base period monthly means. Anomalies have been smoothed for display purposes.
FIGURE T27. Mean (top) and anomalous (bottom) cloud liquid water (g m$^{-2}$) based on the Special Sensor Microwave/Imager (SSM/I) (Weng et al 1997: J. Climate, 10, 1086-1098). Anomalies are calculated from the 1987-2006 base period means.
FIGURE T28. Mean (top) and anomalous (bottom) vertically integrated water vapor or precipitable water (kg m$^{-2}$) based on the Special Sensor Microwave/Imager (SSM/I) (Ferraro et. al, 1996: *Bull. Amer. Meteor. Soc.*, 77, 891-905). Anomalies are calculated from the 1987-2006 base period means.
April 2010
Divergence and East-West Divergent Circulation

Mean

Anomaly

FIGURE T29. Pressure-longitude section (100E-80W) of the mean (top) and anomalous (bottom) divergence (contour interval is 1×10^{-6} s$^{-1}$) and divergent circulation averaged between 5N-5S. The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T30. Pressure-longitude section (80W-100E) of the mean (top) and anomalous (bottom) divergence (contour interval is 1×10^{-6} s$^{-1}$) and divergent circulation averaged between 5N-5S. The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T31. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s\(^{-1}\)) and divergent circulation averaged over the west Pacific sector (120E-170E). The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the 1979-1995 base period monthly means.
FIGURE T32. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s$^{-1}$) and divergent circulation averaged over the central Pacific sector (130W-180W). The divergent circulation is represented by vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the 1979-1995 base period monthly means.
During April 2010, 459 satellite-tracked surface drifting buoys, 73% with subsurface drogues attached for measuring mixed layer currents, were reporting from the tropical Pacific. Dramatic 50 cm/s westward anomalies were measured by many near-equatorial drifters at longitudes 110-150W, somewhat east of the weaker anomalies seen last month. A narrower band of eastward anomalies was measured at 4-5N, centered on 120W. Warm anomalies of +0.5C to +1.5C were common south of 10N, while cold anomalies of -0.5C to -1.5C were measured by several drifters north of this and west of 140W.

Figure A1.1 Top: Movements of drifting buoys in the tropical Pacific Ocean during April 2010. The linear segments of each trajectory represent a one week displacement. Trajectories of buoys which have lost their subsurface drogues are gray; those with drogues are black. Middle: Monthly mean currents calculated from all buoys 1993-2002 (gray), and currents measured by the drogued buoys this month (black) smoothed by an optimal filter. Bottom: Anomalies from the climatological monthly mean currents for this month.
FIGURE A1.2. Wind Vectors and sea surface temperature (SSTs) from the TAO/TRITON mooring array. Top panel shows monthly means; bottom panel shows monthly anomalies from the COADS wind climatology and Reynolds SST climatology (1971-2000). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/NDBC).
FIGURE A1.3. Time-longitude sections of surface zonal winds (m s⁻¹), sea surface temperature (C) and 20°C isotherm depth (m) for the past 24 months. Analysis is based on 5-day averages of moored time series data from the TAO/TRITON array. Positive winds are westerly. Squares on the abscissas indicate longitude where data were available at the start of the time series (top) and end of the time series (bottom). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/ NDBC).
FIGURE A1.4. Time-longitude sections of surface zonal winds (m s\(^{-1}\)), sea surface temperature (\(^{\circ}\)C) and 20\(^{\circ}\)C isotherm depth (m) for the past 24 months. Analysis is based on 5-day averages of moored time series data from the TAO/TRITON array. Anomalies are relative to monthly climatological cubic spline fitted to 5-day intervals (COADS winds, Reynolds SST, CTD/XBT 20\(^{\circ}\)C depth). Positive winds are westerly. Squares on the abscissas indicate longitude where data were available at the start of the time series (top) and end of the time series (bottom). The TAO/TRITON array is presently supported by the United States (NOAA), Japan (STA), and France (IRD). Further information is available from Richard L. Crout (NOAA/
In cooperation with institutions in Peru and Ecuador, NOAA-AOML main-
tained a network coastal stations reporting SST and sea level in real time
(via satellite downlink) during the TOGA program, from 1985 to 1995. The
South American partners took over full operational responsibility there-
after while NOAA-AOML assumed a data management role, continuing
publication of these monthly reports along with their partners. The five-day
averages (pentads) at critical stations give us an effective means of monitor-
ing coastal conditions with good time resolution and compact data volume.

The variations in SST and sea levels along the South American coast continue to track
climatology but with large intraseasonal swings either way. The latest fluctuation in
April dipped below the normals.

Sea Sfc Temperature

<table>
<thead>
<tr>
<th>Date</th>
<th>Baltra</th>
<th>Talara</th>
<th>Callao</th>
<th>Baltra</th>
<th>Libertad</th>
<th>Callao</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>108.1</td>
</tr>
<tr>
<td>3</td>
<td>20.5</td>
<td>17.2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>108.1</td>
</tr>
<tr>
<td>8</td>
<td>20.6</td>
<td>16.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>104.1</td>
</tr>
<tr>
<td>13</td>
<td>21.3</td>
<td>16.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>109.8</td>
</tr>
<tr>
<td>18</td>
<td>21.4</td>
<td>16.7</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>105.3</td>
</tr>
<tr>
<td>23</td>
<td>20.6</td>
<td>17.8</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>111.5</td>
</tr>
<tr>
<td>28</td>
<td>20.3</td>
<td>17.2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>108.1</td>
</tr>
</tbody>
</table>

Sea Level Height

<table>
<thead>
<tr>
<th>Date</th>
<th>Baltra</th>
<th>Talara</th>
<th>Callao</th>
<th>Baltra</th>
<th>Libertad</th>
<th>Callao</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>108.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>-0.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-6.5</td>
</tr>
<tr>
<td>8</td>
<td>0.4</td>
<td>-1.1</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-10.4</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>-1.0</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-4.6</td>
</tr>
<tr>
<td>18</td>
<td>1.6</td>
<td>-0.9</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-8.9</td>
</tr>
<tr>
<td>23</td>
<td>0.9</td>
<td>0.3</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-2.5</td>
</tr>
<tr>
<td>28</td>
<td>0.7</td>
<td>-0.2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-5.7</td>
</tr>
</tbody>
</table>

Anomalies

<table>
<thead>
<tr>
<th>Date</th>
<th>Baltra</th>
<th>Talara</th>
<th>Callao</th>
<th>Baltra</th>
<th>Libertad</th>
<th>Callao</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>108.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>-0.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-6.5</td>
</tr>
<tr>
<td>8</td>
<td>0.4</td>
<td>-1.1</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-10.4</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>-1.0</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-4.6</td>
</tr>
<tr>
<td>18</td>
<td>1.6</td>
<td>-0.9</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-8.9</td>
</tr>
<tr>
<td>23</td>
<td>0.9</td>
<td>0.3</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-2.5</td>
</tr>
<tr>
<td>28</td>
<td>0.7</td>
<td>-0.2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-5.7</td>
</tr>
</tbody>
</table>

Email: David.Enfield@noaa.gov; Phone: (305) 361-4351; Fax: (305) 361-4392
** - Data missing due to hardware failure
FIGURE A1.6. Near-real-time Objective FSU Pseudo-stress Magnitude and Vectors (10m) April 2010

FSU SURFACE PSEUDO-STRESS VECTORS AND ANOMALIES: April 2010. Pseudo-stress vectors (top) are objectively analyzed from ship and buoy winds on a 2° grid. Ship and buoy data are independently weighted and the background field is created from the data. Contour interval of the vector magnitudes is 20 M S\(^{-2}\). Anomalies (bottom) are departures from 1978–2001 mean. The contour interval is 10 M S\(^{-2}\). For more information, please visit our web site at http://www.coaps.fsu.edu/RVSMDC/html/winds.shtml. Produced by Jeremy Rolph, Mark A. Bourassa, and Shawn R. Smith, Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306-2840, USA.
The canonical correlation analysis (CCA) forecast of SST in the central Pacific (Barnett et al. 1988, *Science*, 241, 192196; Barnston and Ropelewski 1992, *J. Climate*, 5, 13161345), is shown in Figs. F1 and F2. This forecast is produced routinely by the Prediction Branch of the Climate Prediction Center. The predictions from the National Centers for Environmental Prediction (NCEP) Coupled Forecast System Model (CFS03) are presented in Figs. F3 and F4a, F4b. Predictions from the Markov model (Xue, et al. 2000: *J. Climate*, 13, 849871) are shown in Figs. F5 and F6. Predictions from the latest version of the LDEO model (Chen et al. 2000: *Geophys. Res. Let.*, 27, 25852587) are shown in Figs. F7 and F8. Predictions using linear inverse modeling (Penland and Magorian 1993: *J. Climate*, 6, 10671076) are shown in Figs. F9 and F10. Predictions from the Scripps / Max Planck Institute (MPI) hybrid coupled model (Barnett et al. 1993: *J. Climate*, 6, 15451566) are shown in Fig. F11. Predictions from the ENSOCLIPER statistical model (Knaff and Landsea 1997, *Wea. Forecasting*, 12, 633652) are shown in Fig. F12. Niño 3.4 predictions are summarized in Fig. F13, provided by the Forecasting and Prediction Research Group of the IRI.

The CPC and the contributors to the Forecast Forum caution potential users of this predictive information that they can expect only modest skill.

ENSO Alert System Status

El Niño Advisory

Outlook

A transition to ENSO-neutral conditions is expected by June 2010, which will continue into the Northern Hemisphere summer 2010.
Discussion

El Niño weakened during April 2010 as positive surface temperature (SST) anomalies decreased across the equatorial Pacific Ocean. However, SST anomalies still exceeded +0.5°C across most of the Pacific at the end of the month (Fig. T18, Table T2). Since the end of February, subsurface heat content anomalies (average temperatures in the upper 300m of the ocean) have decreased steadily in association with the expansion and strengthening of below-average temperatures at depth (25-200m; Fig. T17). Also, enhanced convection developed over Indonesia, while suppressed convection strengthened and expanded over the tropical Pacific, south of the equator (Fig. T25). The low-level equatorial trade winds remained near-average, and anomalous upper-level westerly winds prevailed over the central Pacific during much of April (Figs. T20, T21). Collectively, these oceanic and atmospheric anomalies reflect a weakening El Niño.

Nearly all models predict decreasing SST anomalies in the Niño-3.4 region through the Northern Hemisphere summer 2010 (Figs. F1-F13). Most models predict a transition to ENSO-neutral conditions during April-June 2010, followed by ENSO-neutral conditions through the end of the year. However, by July-September 2010, the envelope of model solutions includes a significant number (nearly a third) indicating the onset of La Niña conditions. Even though ENSO-neutral conditions are most likely during the second half of the year, the general tendency of the models in recent months has been toward increasingly negative SST anomalies in the Niño-3.4 region. These forecasts, in addition to various oceanic and atmospheric indicators, indicate a growing possibility of La Niña developing during the second half of 2010.

Weekly updates of oceanic and atmospheric conditions are available on the Climate Prediction Center homepage (El Niño/La Niña Current Conditions and Expert Discussions).
FIGURE F1. Canonical correlation analysis (CCA) sea surface temperature (SST) anomaly prediction for the central Pacific (5°N to 5°S, 120°W to 170°W (Barnston and Ropelewski, 1992, *J. Climate*, 5, 1316-1345). The three plots on the left hand side are, from top to bottom, the 1-season, 2-season, and 3-season lead forecasts. The solid line in each forecast represents the observed SST standardized anomaly through the latest month. The small squares at the mid-points of the forecast bars represent the real-time CCA predictions based on the anomalies of quasi-global sea level pressure and on the anomalies of tropical Pacific SST, depth of the 20°C isotherm and sea level height over the prior four seasons. The vertical lines represent the one standard deviation error bars for the predictions based on past performance. The three plots on the right side are skills, corresponding to the predicted and observed SST. The skills are derived from cross-correlation tests from 1956 to present. These skills show a clear annual cycle and are inversely proportional to the length of the error bars depicted in the forecast time series.
FIGURE F2. Canonical Correlation Analysis (CCA) forecasts of sea-surface temperature anomalies for the Nino 3.4 region (5N-5S, 120W-170W) for the upcoming five consecutive 3-month periods. Forecasts are expressed as standardized SST anomalies. The CCA predictions are based on anomaly patterns of SST, depth of the 20C isotherm, sea level height, and sea level pressure. Small squares at the midpoints of the vertical forecast bars represent the CCA predictions, and the bars show the one (thick) and two (thin) standard deviation errors. The solid continuous line represents the observed standardized three-month mean SST anomaly in the Nino 3.4 region up to the most recently available data.
FIGURE F3. Predicted 3-month average sea surface temperature (left) and anomalies (right) from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast members. Contour interval is 1°C, with additional contours for 0.5°C and -0.5°C. Negative anomalies are indicated by dashed contours.
FIGURE F4. Predicted and observed sea surface temperature (SST) anomalies for the Nino 3 (top) and Nino 3.4 (bottom) regions from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast members. The ensemble mean of all 40 forecast members is shown by the blue line, individual members are shown by thin lines, and the observation is indicated by the black line. The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W.
FIGURE F5. Predicted 3-month average sea surface temperature anomalies from the NCEP/CPC Markov model (Xue et al. 2000, *J. Climate*, 13, 849-871). The forecast is initiated in APR 2010. Contour interval is 0.3°C and negative anomalies are indicated by dashed contours. Anomalies are calculated relative to the 1971-2000 climatology.
FIGURE F6. Time evolution of observed and predicted SST anomalies in the Nino 3.4 region (up to 12 lead months) by the NCEP/CPC Markov model (Xue et al. 2000, *J. Climate*, 13, 849–871). Anomalies are calculated relative to the 1971-2000 climatology. Shown in each panel are the forecasts grouped by three consecutive starting months: (a) is for December, January, and February, (b) is for March, April, and May, (c) is for June, July, and August, and (d) is for September, October, and November. The observed Nino 3.4 SST anomalies are indicated by the black dashed lines. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W.
FIGURE F7. Forecasts of the tropical Pacific Predicted SST (shading) and vector wind anomalies for the next 3 seasons based on the LDEO model. Each forecast represents an ensemble average of 3 sets of predictions initialized during the last three consecutive months (see Figure F8).
FIGURE F8. LDEO forecasts of SST anomalies for the Nino 3 region using wind stresses obtained from (top) QuikSCAT, (middle) NCEP, and (bottom) Florida State Univ. (FSU), along with SSTs (obtained from NCEP), and sea surface height data (obtained from TOPEX/POSEIDON) data. Each thin blue line represents a 12-month forecast, initialized one month apart for the past 24 months. Observed SST anomalies are indicated by the thick red line. The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W.
FIGURE F9. Forecast of tropical SST anomalies from the Linear Inverse Modeling technique of Penland and Magorian (1993: *J. Climate*, 6, 1067-1076). The contour interval is 0.3°C. Anomalies are calculated relative to the 1951-2000 climatology and are projected onto 20 leading EOFs.
FIGURE F10. Predictions of SST anomalies in the Nino3.4 region (blue line) for leads of three months (top) to 12 months (bottom), from the Linear Inverse Modeling technique of Penland and Magorian (1993: *J. Climate*, 6, 1067-1076). Observed SST anomalies are indicated by the red line. Anomalies are calculated relative to the 1951-2000 climatology and are projected onto 20 leading EOFs. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W.
FIGURE F11. SST anomaly forecast for the equatorial Pacific from the Hybrid Coupled Model (HCM) developed by the Scripps Institution of Oceanography and the Max-Plank Institut fuer Meteorlogie.
FIGURE F12. ENSO-CLIPER statistical model forecasts of three-month average sea surface temperature anomalies (green lines, deg. C) in (top panel) the Nino 4 region (5N-5S, 160E-150W), (second panel) the Nino 3.4 region (5N-5S, 170W-120W), (third panel) the Nino 3 region (5N-5S, 150W-90W), and (fourth panel) the Nino 1+2 region (0-10S, 90W-80W) (Knaff and Landsea 1997, *Wea. Forecasting*, 12, 633-652). Bottom panel shows predictions of the three-month standardized Southern Oscillation Index (SOI, green line). Horizontal bars on green line indicate the adjusted root mean square error (RMSE). The observed three-month average values are indicated by the thick blue line. SST anomalies are departures from the 1971-2000 base period means, and the SOI is calculated from the 1951-1980 base period means.
FIGURE F13. Time series of predicted sea surface temperature anomalies for the Nino 3.4 region (deg. C) from various dynamical and statistical models for nine overlapping 3-month periods. The Nino 3.4 region spans the east-central equatorial Pacific between 5N-5S, 170W-120W. Figure provided by the International Research Institute (IRI).
Extratropical Highlights – April 2010

1. Northern Hemisphere

The 500-hPa circulation during April featured above-average heights in the polar region, across the central North Pacific, and over Europe and northern Africa, and below average heights in the Gulf of Alaska, the western U.S., and northern China/ Mongolia (Fig. E9). These anomalies projected strongly onto several teleconnection patterns, including the negative phases of the North Atlantic Oscillation (NAO) and the East Pacific/Central Pacific (EP-NP) pattern, and the positive phases of the East Atlantic (EA), West Pacific (WP), and Pacific/North American (PNA) patterns (Table E1, Fig. E7). Each of these signals has been exceptionally persistent during the past several months, with the NAO, EA, and PNA patterns prevailing since July 2009. The negative EP-NP pattern has been present since November 2009, and the positive WP pattern has been present since January 2010.

The main temperature signals during April were consistent with the upper-level circulation, and included above average temperatures in Canada, the northeastern U.S., and Europe, and below average temperatures in China and Mongolia (Fig. E1). The main precipitation signals during the month included above-average totals in the western U.S., the Plains states, and eastern China, and below average totals across the eastern half of the U.S., most of Europe, and western Russia (Fig. E3).

a. North Pacific/ North America

The extratropical circulation during April featured a continuation of above average heights at 500-hPa over the central North Pacific Ocean and Canada, and below average heights over the high latitudes of the North Pacific, and over the eastern North Pacific/ western U.S. (Fig. E9). This anomaly pattern projected onto three leading modes of variability, which included the positive phases of both the PNA and WP patterns, and the negative phase of the EP-NP pattern. These patterns have been exceptionally persistent for the past several months, with the positive PNA pattern prevailing since July 2009 in association with the ongoing El Niño. Over North America, aspects of the PNA pattern during April (combined with the negative NAO) included a reversal in the normal ridge-trough positions, including a disappearance of the mean Hudson Bay trough.

These conditions again contributed to above average temperatures in Canada, with large portions of the country recording departures in the upper 90th percentile of occurrences (Fig. E1). They also contributed to a continuation of below average temperatures along the U.S. Gulf Coast and in the Gulf of Mexico, where SST departures remained in the lowest 10th percentile of occurrences.

The anomalous ridge-trough configuration also contributed to a pronounced east-west dipole of precipitation anomalies in the U.S., with above average totals in the west and below average totals in the east (Fig. E3). Area-averaged totals in the Pacific Northwest, Southern California, and Inter-Mountain regions were in the upper 90th percentile of occurrences (Fig. E5), while area-averaged totals in the mid-Atlantic and Northeast states were in the lowest 10th percentile of occurrences.
b. Europe

During April, conditions across the North Atlantic and Europe were associated with a 2-celled pattern of 500-hPa height anomalies (Fig. E9), and with a 3-celled pattern of 200-hPa streamfunction anomalies (Fig. T22). Over the North Atlantic, these anomalies reflected enhanced ridges at high latitude and in the subtropics, and a broad trough in the middle latitudes. This circulation projected strongly onto the negative phase of the NAO and the positive phase of the EA pattern (Table E1, Fig. E7). Both of these patterns have persisted since July 2009.

During April, regional aspects of these signals also included above average heights over Europe, and an extensive southwesterly and southerly flow into Europe (Fig. E9). These conditions contributed to above average temperatures across the continent, with portions of southern Europe recording departures in the upper 90th percentile of occurrences (Fig. E1). They also contributed to below average precipitation across Europe and portions of western Russia, with Southern (Northern) Europe recording area-averaged totals in the lowest 10th (20th) percentile of occurrences (Fig. E4).

Another related circulation feature that has been observed since February is a nearly complete disappearance of the northeasterly trade winds that normally extend southward from the eastern extratropical North Atlantic into the tropical Atlantic. The result has been significantly reduced upwelling near the West African coast, the near-absence of cold water advection into the tropical Atlantic, and reduced oceanic heat flux into the atmosphere. These conditions contributed to record warm SSTs in the tropical Atlantic during March and April, with area-averaged departures during April reaching +1.3°C.

c. China and Mongolia

The extratropical circulation during April featured a deep 500-hPa trough centered over Mongolia and northern China (Fig. E9), which brought below average temperatures to the region (Fig. E1). Anomalous southerly flow and an enhanced jet entrance region downstream of the trough axis (Fig. T21) contributed to an axis of well above average precipitation that extended across eastern China and southern Japan (Fig. E3). For China as a whole, area-averaged precipitation during April was in the upper 90th percentile of occurrences (Fig. E4).

2. Southern Hemisphere

The 500-hPa circulation during April featured above average heights in the area south of Australia, and below average heights across the high latitudes of the South Pacific and in the area southwest of South Africa (Fig. E15). At 200-hPa, the circulation also featured an enhanced ridge and anomalous anticyclonic circulation over tropical southern Africa and Madagascar (Figs. T21, T22).

In southern Africa, the official rainy season lasts from October to April, and rainfall is often below average during El Niño. During April 2010, rainfall totals for the monsoon region as a whole were in the upper 90th percentile of occurrences (Fig. E4), with the most significant surpluses found in Mozambique and interior southeastern Africa (Fig. E3). For the entire 2009-10 South African rainy season, precipitation was above average in two months (November and April), generally near-average in four months (October and January-March), and below average in one month (December).
TELECONNECTION INDICES

<table>
<thead>
<tr>
<th>MONTH</th>
<th>NAO</th>
<th>EA</th>
<th>WP</th>
<th>EP-NP</th>
<th>PNA</th>
<th>TNH</th>
<th>EATL/WRUS</th>
<th>SCAND</th>
<th>POLEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 10</td>
<td>-0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>-0.9</td>
<td>1.5</td>
<td>---</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>MAR 10</td>
<td>-0.9</td>
<td>1.4</td>
<td>2.1</td>
<td>-1.5</td>
<td>2.0</td>
<td>---</td>
<td>0.8</td>
<td>-0.5</td>
<td>-1.4</td>
</tr>
<tr>
<td>FEB 10</td>
<td>-2.0</td>
<td>1.3</td>
<td>0.7</td>
<td>-0.1</td>
<td>0.6</td>
<td>-1.2</td>
<td>-0.7</td>
<td>1.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>JAN 10</td>
<td>-1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>-0.7</td>
<td>1.3</td>
<td>-1.2</td>
<td>-0.6</td>
<td>1.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>DEC 09</td>
<td>-1.9</td>
<td>1.1</td>
<td>-0.9</td>
<td>---</td>
<td>0.3</td>
<td>-0.6</td>
<td>-0.8</td>
<td>0.5</td>
<td>-1.6</td>
</tr>
<tr>
<td>NOV 09</td>
<td>0.0</td>
<td>1.9</td>
<td>1.4</td>
<td>-1.5</td>
<td>0.2</td>
<td>---</td>
<td>-0.2</td>
<td>0.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>OCT 09</td>
<td>-1.0</td>
<td>1.4</td>
<td>-2.4</td>
<td>0.7</td>
<td>0.4</td>
<td>---</td>
<td>-0.1</td>
<td>-0.9</td>
<td>-2.6</td>
</tr>
<tr>
<td>SEP 09</td>
<td>1.5</td>
<td>0.9</td>
<td>-0.7</td>
<td>-1.7</td>
<td>1.3</td>
<td>---</td>
<td>-0.5</td>
<td>-0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>AUG 09</td>
<td>-0.2</td>
<td>2.6</td>
<td>0.3</td>
<td>-2.3</td>
<td>0.6</td>
<td>---</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>JUL 09</td>
<td>-2.2</td>
<td>1.0</td>
<td>0.5</td>
<td>1.4</td>
<td>1.2</td>
<td>---</td>
<td>0.3</td>
<td>-1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>JUN 09</td>
<td>-1.2</td>
<td>-1.0</td>
<td>-1.6</td>
<td>-0.1</td>
<td>0.4</td>
<td>---</td>
<td>0.7</td>
<td>-0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>MAY 09</td>
<td>1.7</td>
<td>1.5</td>
<td>-1.2</td>
<td>1.6</td>
<td>-0.6</td>
<td>---</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>APR 09</td>
<td>-0.2</td>
<td>0.7</td>
<td>-0.1</td>
<td>0.6</td>
<td>0.2</td>
<td>---</td>
<td>1.4</td>
<td>-0.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

TABLE E1 Standardized amplitudes of selected Northern Hemisphere teleconnection patterns for the most recent thirteen months (computational procedures are described in Fig. E7). Pattern names and abbreviations are: North Atlantic Oscillation (NAO); East Atlantic pattern (EA); West Pacific Pattern (WP); East Pacific - North Pacific pattern (EP-NP); Pacific/North American pattern (PNA); Tropical/Northern Hemisphere pattern (TNH); East Atlantic/Western Russia pattern (EATL/WRUS-called Eurasia-2 pattern by Barnston and Livezey, 1987, *Mon. Wea. Rev.*, 115, 1083-1126); Scandanavia pattern (SCAND-called Eurasia-1 pattern by Barnston and Livezey 1987); and Polar Eurasia pattern (POLEUR). No value is plotted for calendar months in which the pattern does not appear as a leading mode.
FIGURE E1. Surface temperature anomalies (°C, top) and surface temperature expressed as percentiles of the normal (Gaussian) distribution fit to the 1971–2000 base period data (bottom) for APR 2010. Analysis is based on station data over land and on SST data over the oceans (top). Anomalies for station data are departures from the 1971–2000 base period means, while SST anomalies are departures from the 1971–2000 adjusted OI climatology. (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Regions with insufficient data for analysis in both figures are indicated by shading in the top figure only.
FIGURE E2. Monthly global (top), Northern Hemisphere (middle), and Southern Hemisphere (bottom) surface temperature anomalies (land only, °C) from January 1990 - present, computed as departures from the 1971–2000 base period means.
FIGURE E3. Anomalous precipitation (mm, top) and precipitation percentiles based on a Gamma distribution fit to the 1979–2000 base period data (bottom) for APR 2010. Data are obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335–3342). Contours are drawn at 200, 100, 50, 25, -25, -50, -100, and -200 mm in top panel. Percentiles are not plotted in regions where mean monthly precipitation is <5 mm/month.
FIGURE E4. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles (%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335–3342). The monthly precipitation climatology (mm, dashed lines) is from the 1979–2000 base period monthly means. Monthly percentiles are not shown if the monthly mean is less than 5 mm.
FIGURE E5. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles (% bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived precipitation estimates (Janowiak and Xie 1999, *J. Climate*, 12, 3335–3342). The monthly precipitation climatology (mm, dashed lines) is from the 1979–2000 base period monthly means. Monthly percentiles are not shown if the monthly mean is less than 5 mm.
FIGURE E6. Observed precipitation (upper left), departure from average (upper right), percent of average (lower left), and average precipitation (lower right) for APR 2010. The units are given on each panel. Base period for averages is 1971–2000. Results are based on CPC’s U. S. daily precipitation analysis, which is available at http://www.cpc.ncep.noaa.gov/prodcuts/precip/realtime.
FIGURE E7. Standardized monthly Northern Hemisphere teleconnection indices. The teleconnection patterns are calculated from a Rotated Principal Component Analysis (RPCA) applied to monthly standardized 500-hPa height anomalies during January 1950 – December 2000. To obtain these patterns, ten leading un-rotated modes are first calculated for each calendar month by using the monthly height anomaly fields for the three-month period centered on that month: [i.e., The July modes are calculated from the June, July, and August standardized monthly anomalies]. A Varimax spatial rotation of the ten leading un-rotated modes for each calendar month results in 120 rotated modes (12 months x 10 modes per month) that yield ten primary teleconnection patterns. The teleconnection indices are calculated by first projecting the standardized monthly anomalies onto the teleconnection patterns corresponding to that month (eight or nine teleconnection patterns are seen in each calendar month). The indices are then solved for simultaneously using a Least-Squares approach. In this approach, the indices are the solution to the Least-Squares system of equations which explains the maximum spatial structure of the observed height anomaly field during the month. The indices are then standardized for each pattern and calendar month independently. No index value exists when the teleconnection pattern does not appear as one of the ten leading rotated EOF’s valid for that month.
FIGURE E8. Northern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for APR 2010. Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from the 1979-95 base period monthly means.
FIGURE E9. Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for APR 2010. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3 dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as departures from the 1979-95 base period monthly means.
FIGURE E10. Northern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for APR 2010. Mean (anomaly) isotach contour interval is 10 (5) ms$^{-1}$. Values greater than 30 ms$^{-1}$ (left) and 10 ms$^{-1}$ (right) are shaded. Anomalies are departures from the 1979-95 base period monthly means.
FIGURE E11. Northern Hemisphere percentage of days during APR 2010 in which 500-hPa height anomalies greater than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour interval is 20%.
FIGURE E12. Northern Hemisphere: Daily 500-hPa height anomalies for APR 2010 averaged over the 5° latitude band centered on 40°N. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are departures from the 1979-95 base period daily means.
FIGURE E13. Northern Hemisphere 500-hPa heights (thick contours, interval is 6 dam) overlaid with (Top) Standard deviation of 10-day high-pass (HP) filtered height anomalies and (Bottom) Normalized anomalous variance of 10-day HP filtered height anomalies. A Lanczos filter is used to calculate the HP filtered anomalies. Anomalies are departures from the 1979-2000 daily means.
FIGURE E14. Southern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for APR 2010. Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from the 1979-95 base period monthly means.
FIGURE E15. Southern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for APR 2010. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3 dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as departures from the 1979-95 base period monthly means.
FIGURE E16. Southern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for APR 2010. Mean (anomaly) isotach contour interval is 10 (5) ms$^{-1}$. Values greater than 30 ms$^{-1}$ (left) and 10 ms$^{-1}$ (rights) are shaded. Anomalies are departures from the 1979-95 base period monthly means.
FIGURE E17. Southern Hemisphere percentage of days during APR 2010 in which 500-hPa height anomalies greater than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour interval is 20%.
FIGURE E18. Southern Hemisphere: Daily 500-hPa height anomalies for APR 2010 averaged over the 5° latitude band centered on 40°S. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are departures from the 1979-95 base period daily means.
FIGURE S1. Stratospheric height anomalies (m) at selected levels for APR 2010. Positive values are indicated by solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour interval is 60 m. Anomalies are calculated from the 1979–95 base period means. Winter Hemisphere is shown.
FIGURE S2. Height-longitude sections during APR 2010 for height anomalies (contour) and temperature anomalies (shaded). In both panels, positive values are indicated by solid contours and dark shading, while negative anomalies are indicated by dashed contours and light shading. Contour interval for height anomalies is 60 m and for temperature anomalies is 2°C. Anomalies are calculated from the 1979–95 base period monthly means. Winter Hemisphere is shown.
FIGURE S4. Daily mean temperatures at 10-hPa and 2-hPa (thick line) in the region 65°–90°N and 65°–90°S for the past two years. Dashed line depicts the 1979–99 base period daily mean. Thin solid lines depict the daily extreme maximum and minimum temperatures.
FIGURE S5. Monthly ozone anomalies (percent) from the long term monthly means for five zones: 50N-30N (NH mid-latitudes), 25N-10N (NH tropical surf zone), 10N-10S (Equatorial-QBO zone), 10S-25S (SH tropical surf zone), and 30S-50S (SH mid-latitudes). The long term monthly means are determined from the entire data set beginning in 1979.
FIGURE S6. Northern (top) and Southern (bottom) Hemisphere total ozone anomaly (percent difference from monthly mean for the period 1979–86). The region near the winter pole has no SBUV/2 data.
FIGURE S7. Daily vertical component of EP flux (which is proportional to the poleward transport of heat or upward transport of potential energy by planetary wave) at 100 hPa averaged over (top) 30°N–90°N and (bottom) 30°S–90°S for APR 2010. The EP flux unit (kg m⁻¹ s⁻²) has been scaled by multiplying a factor of the Brunt Vaisala frequency divided by the Coriolis parameter and the radius of the earth. The letter 'M' indicates the current monthly mean value and the letter 'C' indicates the climatological mean value. Additionally, the normalized departures from the monthly climatological EP flux values are shown.
FIGURE S8. Daily time series showing the size of the SH polar vortex (representing the area enclosed by the 32 PVU contour on the 450K isentropic surface), and the areal coverage of temperatures < -78°C on the 450K isentropic surface.
FIGURE A2.1. (a) Daily amplitudes of the Arctic Oscillation (AO) the North Atlantic Oscillation (NAO), and the Pacific-North American (PNA) pattern. The pattern amplitudes for the AO, (NAO, PNA) are calculated by projecting the daily 1000-hPa (500-hPa) height anomaly field onto the leading EOF obtained from standardized time-series of daily 1000-hPa (500-hPa) height for all months of the year. The base period is 1979–2000.

(b-d) Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for selected periods during APR 2010 are shown in the remaining 3 panels. Mean heights are denoted by solid contours drawn at an interval of 8 dam. Dark (light) shading corresponds to anomalies greater than 50 m (less than -50 m). Anomalies are calculated as departures from the 1979–95 base period daily means.
FIGURE A2.2. SSM/I derived snow cover frequency (%) (left) and snow cover anomaly (%) (right) for the month of APR 2010 based on 1987 - 2006 base period for the Northern Hemisphere (top) and Southern Hemisphere (bottom). It is generated using the algorithm described by Ferraro et. al, 1996, Bull. Amer. Meteor. Soc., vol 77, 891-905.