Performance-based multimodel probabilistic climate change scenarios

Arthur M. Greene, Lisa Goddard, Upmanu Lall International Research Institute for Climate Prediction The Earth Institute at Columbia University Palisades, NY amg@iri.columbia.edu

- Goal: Production of regional climate outlooks for the coming century
- Initial focus: Evolution of mean regional temperatures; eventually continuing with variability, precipitation...
- Methodology: Multimodel ensemble, combined in the framework of a linear Bayesian probability model
 - Coefficients derived by fitting to simulations of 20th-century climate (20C3M runs from IPCC AR4)
 - Bayesian estimation employed, in keeping with probabilistic framework
 - Model formulations with varying degrees of complexity explored

Regional definitions as in the IPCC SAR...

AOGCMs may exhibit significant regional temperature biases

Central American sector (CAM), raw temperature series

Anomalies (relative to each model's 1961-1990 climatology)

Incoherence not limited to interannual variations

ALA ann

CAM ann

Mean regional temperatures are simulated with more fidelity than are regional temperature *trends*.

Regional annual mean T, 1961-1990

Regional annual-mean T trends, 1965-1998

Probability model structures compared

- A $Y_{ik} \sim N(\mu_{ik}, \sigma^2)$ (variance of Y is uniform...)
- B: $Y_{ik} \sim N(\mu_{ik}, \sigma_k^2)$ (or regionally dependent...)
- C: $\beta_{jk} \sim MVN(\mu_{\beta}^{(j)}\Sigma)$ (cov(β) modeled explicitly)
- The last of these represents a multilevel, or hierarchical structure:
 - 1: Regional series of obs and simulations
 - 2: Global structure for parent distribution of β
- Priors are "diffuse" (i.e. non-informative) with the qualified exception of Σ, for which a scale matrix must be specified to at least an order of magnitude.

Regional input covariance exhibits varying degrees of structure...

EAF ann

EAF DJF

EAF JJA

Some model comparison statistics (mean annual temperature)

Model	Dbar	Dhat	DIC	pD
Α	2532	2217	2847	315.3
В	1768	1429	2108	339.4
С	1735	1505	1964	229.8

Dbar: Mean of the posterior deviance:mean $(-2 \log(p(y|\theta)))$ Dhat: Posterior deviance computed from mean θ : $-2 \log(p|(y|\theta_{bar}))$ DIC: "Deviance Information Criterion," an estimate of predictive skill.pD: Effective number of parameters in the model.

Conclusion: Model B a lot better than A; C a little better than B

Some fitted series...

ALA ann: Obs, unweighted model mean, fitted values

ALA ann: Obs, unweighted model mean, fitted values

Model A

Fitted series, cont'd

Tanom

Tanom

2000

ALA ann: Obs, unweighted model mean, fitted values

SEA ann: Obs, unweighted model mean, fitted values

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

1900

Tanom

obs fit mean

1920

ALA ann: Obs, unweighted model mean, fitted values

SEA ann: Obs, unweighted model mean, fitted values

Model B

1960

1980

1940

Year

Model structure and estimation of β_{jk}

Distributions of beta

Variance distributions for beta

Prior distribution of cov(β) is "imprinted" by the data

Prior correlation for β : A blank slate.

Posterior correlation: (Weak) structure is present

Cross-validation

Computed with respect to decadal means
"Leave-10-out", with model fitted to remaining data. Nine values / region

Region by region (annual mean)

Comparison over all regions

Season	F	P (v ₁ =v ₂ =198)
Ann	4.38	1.16E-23
DJF	2.58	3.05E-11
JJA	3.32	1.22E-16

DJF, JJA...

Coefficients are applied to the SRES scenario simulations to generate the final temperature projections

T change, deg C

Stationarity assumptions cannot be ignored...

NAS ann

T anomaly, deg C 1.0 0.0 1.0 1900 1920 1980 1940 1960 2000 Year **SEA** ann T anomaly, deg C 0.8 0.2 -0.4 1940 1920 1960 1980 2000 1900

Year

Summary

- Regional temperature projections are generated for the 21st century
- Based on IPCC 20C3M experiments, SRES scenario simulations
- AOGCM outputs combined in the framework of a Bayesian hierarchical linear model of limited complexity
- Relaxation of constraint that $\sum_{j} \beta_{jk} = 1$ allows resultant to "escape the envelope" of the underlying simulations
- Projections appear to be an improvement over the unweighted mean of the contributing AOGCMs. This improvement is greatest for the annual mean, decreasing but still present for DJF and JJA
- There is an implicit assumption of stationarity, and with this comes the unavoidable responsibility of choosing good (or at least defensible) assumptions in model building. So what else is new?