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• Goal: Production of regional climate outlooks for the 
coming century

• Initial focus: Evolution of mean regional temperatures; 
eventually continuing with variability, precipitation…

• Methodology: Multimodel ensemble, combined in the 
framework of a linear Bayesian probability model
– Coefficients derived by fitting to simulations of 

20th-century climate (20C3M runs from IPCC AR4)
– Bayesian estimation employed, in keeping with 

probabilistic framework
– Model formulations with varying degrees of 

complexity explored



Regional definitions as in the IPCC SAR…



AOGCMs may exhibit significant 
regional temperature biases
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Incoherence not limited to 
interannual variations
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Mean regional temperatures are simulated with more 
fidelity than are regional temperature trends.

Regional annual mean T, 1961-1990 Regional annual-mean T trends, 1965-1998



Probability model structures compared
• A (variance of Y is uniform…)
• B: (or regionally dependent…)
• C: (cov(β) modeled explicitly)
• The last of these represents a multilevel, or 

hierarchical structure: 
1: Regional series of obs and simulations
2: Global structure for parent distribution of β

• Priors are “diffuse” (i.e. non-informative) with 
the qualified exception of Σ, for which a scale 
matrix must be specified to at least an order of 
magnitude.
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Regional input covariance exhibits varying degrees of structure…



Some model comparison statistics (mean annual temperature)

Model Dbar Dhat DIC pD

A 2532 2217 2847 315.3

B 1768 1429 2108 339.4

C 1735 1505 1964 229.8

Dbar: Mean of the posterior deviance: mean (-2 log(p(y|θ)))
Dhat: Posterior deviance computed from mean θ: -2 log(p|(y|θbar))
DIC: “Deviance Information Criterion,” an estimate of predictive skill.
pD: Effective number of parameters in the model.

Conclusion: Model B a lot better than A; C a little better than B



Some fitted series…
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Fitted series, cont'd
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Model structure and estimation of βjk
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Prior distribution of cov(β) is 
“imprinted” by the data
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(Weak) structure is present
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A blank slate.



Cross-validation

Season F P (ν1=ν2=198)

Ann 4.38 1.16E-23

DJF 2.58 3.05E-11

JJA 3.32 1.22E-16

• Computed with respect to decadal means
• “Leave-10-out”, with model fitted to remaining 

data. Nine values / region

Comparison over all regions

Region by region (annual mean)
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DJF, JJA…
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Coefficients are applied to the SRES scenario simulations 
to generate the final temperature projections
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Stationarity assumptions cannot be ignored…
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Summary
• Regional temperature projections are generated for the 21st century
• Based on IPCC 20C3M experiments, SRES scenario simulations
• AOGCM outputs combined in the framework of a Bayesian 

hierarchical linear model of limited complexity

• Relaxation of constraint that allows resultant to “escape 
the envelope” of the underlying simulations

• Projections appear to be an improvement over the unweighted mean
of the contributing AOGCMs. This improvement is greatest for the
annual mean, decreasing but still present for DJF and JJA

• There is an implicit assumption of stationarity, and with this comes 
the unavoidable responsibility of choosing good (or at least 
defensible) assumptions in model building. So what else is new?
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