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Extracting as much useful information
as possible from model forecasts



Specifics

e Calibrate model outputs using pattern-based
regression.

 Develop PDF from regression statistics.



Outline

* Are regression forecasts reliable?
* How to pick predictor patterns?
* Flexible Forecast Format



Are regression forecasts reliable?

Model Output Statistics (MOS)
Predictor = model forecast = f
Predictand = observation =0
Regression

— E[o|f] = expected value of observation given the forecast
e Perfect model -- E[o|f] =f
* No skill - E[o]|f] = climatology

— Var[o|f] = variance of the observation given the forecast

e Perfect model -- Var[o]f] < climatological variance
e No skill — Var[o]|f] = climatological variance




Are regression forecasts reliable?

e Linear regression (Gaussian)
— E[o]|f] =a f+ c =linear function of f.
e Estimate parameters from data.
— Var[o|f] = error variance.
e Estimate from data

e Generalized linear models (e.g., Poisson)

— Count data



Are regression forecasts reliable?

* Reliability diagram (Categorical forecasts)

— P = forecast probability of an event A (above)

e A=1if the event happens and O otherwise
_ PIOt E[ Al P] VS. P 17(()I‘=_Iobal Precipitation - Net Assessment Forecast (Léad-;Z)
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— Regression = conditional expectatioréfo{
— If P comes from regression |
P=E[A]|P]
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Are regression forecasts reliable in
practice?
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Are regression forecasts reliable in
practice?
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What is the gap between theory and
practice?

e Reliability exposes issues AC does not.
— Correct signal strength
— Correct uncertainty

e What is the source of over-confidence?
e Linear regression assumptions?

— Gaussian distributions?
— Spread too small?
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Why over-confident?

e Spread too small? No.

e Signal too strong? Yes.

—MOS=af+c
a estimated from data
a = “true” a + sampling error
mean(sampling error) =0

— Correct signal variance = a? Var (f)

— Signal variance in practice
(a%2 + sampling variance) Var(f) > true sig. var.



Shrinkage

t2m ridge regression ——mean rpss =0.045
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How to select predictor patterns?



Selecting predictor patterns

t2m ridge regression ——mean rpss =0.045
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Selecting predictor patterns

t2m eofs lasso uniform ——mean rpss =0.053
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IRI Forecast Methodology

Atmospheric GCMs forced with forecast SST scenarios
— Mean of CFSv1, CA and LDEO
— Positive and negative scenarios based on historical error
Pattern-based correction of individual model ensemble
means.

* Regression based on historical model runs
— Forecast SST (CA)
— Observed SST

e Spread estimate from historical forecasts with forecast SST.
Equal weighting of corrected models
Forecast probabilities

— Gaussian distribution for temperature
— Transformed Gaussian for precipitation



Time Series of RPSS for Temperature (Lead-1)
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Constructing forecast probabilities
beyond tercile categories
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Flexible format map room

©

Data Library
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Forecasts
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Flexible format map room
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Summary

Shrinkage improves reliability of regression
forecasts

Penalty methods can be used to choose EOFs

Forecast pdfs can be constructed from
regression models.

Complete forecast information provided.
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